Brain in the Loop Learning Using Functional Near Infrared Spectroscopy

  • Patricia A. Shewokis
  • Hasan Ayaz
  • Adrian Curtin
  • Kurtulus Izzetoglu
  • Banu Onaral
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8027)


The role of practice is crucial in the skill acquisition process and for assessments of learning. In this study, we used a portable neuroimaging technique, functional near infrared (fNIR) spectroscopy for monitoring prefrontal cortex activation during learning of spatial navigation tasks throughout 11 days of training and testing. Two different tasks orders, blocked and random, were used to test the effect of the practice schedule on the acquisition and transfer of 3D computer mazes. Results indicated variable decreases in the hemodynamic response during the initial days of practice. Although there were no differences in mean oxygenation for the practice orders across acquisition the random practice order used less oxygenation than the blocked order for the more difficult tasks in the transfer phase Use of brain activation and behavioral measures provides can provide a more accurate depiction of the learning process. Since fNIR systems are safe, portable and record brain activation in ecologically valid settings, fNIR can contribute to future learning settings for assessment and personalization of the training regimen.


Optical Brain Imaging functional near infrared spectroscopy fNIR Learning Spatial navigation contextual interference 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Magill, R.A., Hall, K.G.: A review of the contextual interference effect in motor skill acquisition. Human Movement Science 9, 241–289 (1990)CrossRefGoogle Scholar
  2. 2.
    Shewokis, P.A.: Memory consolidation and contextual interference effects with computer games. Perceptual and Motor Skills 97, 581–589 (2003)Google Scholar
  3. 3.
    Ayaz, H., Shewokis, P.A., Bunce, S., Izzetoglu, K., Willems, B., Onaral, B.: Optical brain monitoring for operator training and mental workload assessment. Neuroimage 59, 36–47 (2012)CrossRefGoogle Scholar
  4. 4.
    Girouard, A., Solovey, E.T., Jacob, R.J.K.: Designing a passive brain computer interface using real time classification of functional near-infrared spectroscopy. International Journal of Autonomous and Adaptive Communications Systems 6, 26–44 (2013)CrossRefGoogle Scholar
  5. 5.
    James, D.R.C., Orihuela-Espina, F., Leff, D.R., Sodergren, M.H., Athanasiou, T., Darzi, A.W., Yang, G.Z.: The ergonomics of natural orifice translumenal endoscopic surgery (NOTES) navigation in terms of performance, stress, and cognitive behavior. Surgery 149, 525–533 (2011)CrossRefGoogle Scholar
  6. 6.
    James, D.R.C., Orihuela-Espina, F., Leff, D.R., Mylonas, G.P., Kwok, K.-W., Darzi, A.W., Yang, G.-Z.: Cognitive burden estimation for visuomotor learning with fNIRS. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 319–326. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Ayaz, H., Shewokis, P.A., İzzetoğlu, M., Çakır, M.P., Onaral, B.: Tangram solved? Prefrontal cortex activation analysis during geometric problem solving. In: 34th Annual International IEEE EMBS Conference, pp. 4724–4727. IEEE (2012)Google Scholar
  8. 8.
    Çiftçi, K., Sankur, B., Kahya, Y.P., Akın, A.: Functional Clusters in the Prefrontal Cortex during Mental Arithmetic. In: 16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, pp. 1–4 (2008)Google Scholar
  9. 9.
    Hampshire, A., Thompson, R., Duncan, J., Owen, A.M.: Lateral prefrontal cortex subregions make dissociable contributions during fluid reasoning. Cerebral Cortex 21, 1–10 (2011)CrossRefGoogle Scholar
  10. 10.
    Ayaz, H., Bunce, S., Shewokis, P., Izzetoglu, K., Willems, B., Onaral, B.: Using Brain Activity to Predict Task Performance and Operator Efficiency. In: Zhang, H., Hussain, A., Liu, D., Wang, Z. (eds.) BICS 2012. LNCS, vol. 7366, pp. 147–155. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Power, S.D., Kushki, A., Chau, T.: Towards a system-paced near-infrared spectroscopy brain-computer interface: differentiating prefrontal activity due to mental arithmetic and mental singing from the no-control state. Journal of Neural Engineering 8, 066004 (2011)CrossRefGoogle Scholar
  12. 12.
    Ayaz, H., Cakir, M.P., Izzetoglu, K., Curtin, A., Shewokis, P.A., Bunce, S.C., Onaral, B.: Monitoring expertise development during simulated UAV piloting tasks using optical brain imaging. In: 2012 IEEE Aerospace Conference, pp. 1–11 (2012)Google Scholar
  13. 13.
    Shewokis, P.A., Ayaz, H., Izzetoglu, M., Bunce, S., Gentili, R.J., Sela, I., Izzetoglu, K., Onaral, B.: Brain in the Loop: Assessing Learning Using fNIR in Cognitive and Motor Tasks. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) Augmented Cognition, HCII 2011. LNCS, vol. 6780, pp. 240–249. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Pfurtscheller, G., Bauernfeind, G., Wriessnegger, S.C., Neuper, C.: Focal frontal (de)oxyhemoglobin responses during simple arithmetic. Int. J. Psychophysiol. 76, 186–192 (2010)CrossRefGoogle Scholar
  15. 15.
    Ayaz, H., Shewokis, P.A., Curtin, A., Izzetoglu, M., Izzetoglu, K., Onaral, B.: Using MazeSuite and Functional Near Infrared Spectroscopy to Study Learning in Spatial Navigation. J. Vis. Exp., e3443 (2011)Google Scholar
  16. 16.
    Ayaz, H., Allen, S.L., Platek, S.M., Onaral, B.: Maze Suite 1.0: a complete set of tools to prepare, present, and analyze navigational and spatial cognitive neuroscience experiments. Behav Res. Methods 40, 353–359 (2008)CrossRefGoogle Scholar
  17. 17.
    Oldfield, R.C.: The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113 (1971)CrossRefGoogle Scholar
  18. 18.
    Ayaz, H., Izzetoglu, M., Platek, S.M., Bunce, S., Izzetoglu, K., Pourrezaei, K., Onaral, B.: Registering fNIR data to brain surface image using MRI templates. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 2671–2674 (2006)Google Scholar
  19. 19.
    Ayaz, H., Izzetoglu, M., Shewokis, P.A., Onaral, B.: Sliding-window Motion Artifact Rejection for Functional Near-Infrared Spectroscopy. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 6567–6570 (2010)Google Scholar
  20. 20.
    Maxwell, S., Delaney, H.: Designing experiments and analyzing data: A model comparison perspective. Psychology Press, NY (2004)Google Scholar
  21. 21.
    Van Horn, J.D., Gold, J.M., Esposito, G., Ostrem, J.L., Mattay, V., Weinberger, D.R., Berman, K.F.: Changing patterns of brain activation during maze learning. Brain Res. 793, 29–38 (1998)CrossRefGoogle Scholar
  22. 22.
    Wymbs, N.F., Grafton, S.T.: Neural substrates of practice structure that support future off-line learning. Journal of Neurophysiology 102, 2462–2476 (2009)CrossRefGoogle Scholar
  23. 23.
    Shewokis, P.A.: Is the contextual interference effect generalizable to computer games? Perceptual and Motor Skills 84, 3–15 (1997)CrossRefGoogle Scholar
  24. 24.
    Hatakenaka, M., Miyai, I., Mihara, M., Sakoda, S., Kubota, K.: Frontal regions involved in learning of motor skill–A functional NIRS study. Neuroimage 34, 109–116 (2007)CrossRefGoogle Scholar
  25. 25.
    Leff, D.R., Elwell, C.E., Orihuela-Espina, F., Atallah, L., Delpy, D.T., Darzi, A.W., Yang, G.Z.: Changes in prefrontal cortical behaviour depend upon familiarity on a bimanual co-ordination task: An fNIRS study. NeuroImage 39, 805–813 (2008)CrossRefGoogle Scholar
  26. 26.
    Gobel, E.W., Parrish, T.B., Reber, P.J.: Neural correlates of skill acquisition: decreased cortical activity during a serial interception sequence learning task. Neuroimage 58, 1150–1157 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Patricia A. Shewokis
    • 1
    • 2
    • 3
  • Hasan Ayaz
    • 1
    • 2
  • Adrian Curtin
    • 1
    • 2
  • Kurtulus Izzetoglu
    • 1
    • 2
  • Banu Onaral
    • 1
    • 2
  1. 1.School of Biomedical Engineering, Science & Health SystemsDrexel UniversityPhiladelphiaUSA
  2. 2.Cognitive Neuroengineering and Quantitative Experimental Research (CONQUER) CollaborativeDrexel UniversityPhiladelphiaUSA
  3. 3.Nutrition Sciences Department, College of Nursing and Health ProfessionsDrexel UniversityPhiladelphiaUSA

Personalised recommendations