Advertisement

Understanding Brain Connectivity Patterns during Motor Performance under Social-Evaluative Competitive Pressure

  • Hyuk Oh
  • Rodolphe J. Gentili
  • Michelle E. Costanzo
  • Ronald N. Goodman
  • Li-Chuan Lo
  • Jeremy C. Rietschel
  • Mark Saffer
  • Bradley D. Hatfield
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8027)

Abstract

Previous studies have shown that psychological arousal impacts motor performance during social-evaluative tasks by its influence on cortical dynamics, which can translate into motor performance enhancement. Although these findings have established critical links between performance under mental stress and elevated brain activity beyond that required for performance, there is still a need to further investigate brain connectivity during cognitive motor performance under such conditions. Here both electroencephalographic (EEG) and shooting performance were obtained in a shooting task under both performance-alone and competitive conditions. Network connectivity was assessed for the localized EEG sources. The results are consistent with those previously obtained and suggest elevated statistical dependencies and causal interactions between motor and non-motor areas during the competitive condition relative to performance-alone. Such network analysis provides a complementary approach to more traditional EEG derived metrics allowing for examining brain dynamics during cognitive motor performance under varying conditions of mental stress.

Keywords

Brain connectivity EEG Localization Motor Cognition Competitive Pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baumeister, R.F.: Choking Under Pressure: Self-Consciousness and Paradoxical Effects of Incentives on Skillful Performance. Journal of Personality and Social Psychology 46, 610–620 (1984)CrossRefGoogle Scholar
  2. 2.
    Robazza, C., Pellizzari, M., Hanin, Y.: Emotion self-regulation and athletic performance: An application of the IZOF model. Psychology of Sport and Exercise 5, 379–404 (2004)CrossRefGoogle Scholar
  3. 3.
    Deeny, S.P., Haufler, A.J., Saffer, M., Hatfield, B.D.: Electroencephalographic Coherence During Visuomotor Performance: A Comparison of Cortico–Cortical Communication in Experts and Novices. Journal of Motor Behavior 41, 106–116 (2009)CrossRefGoogle Scholar
  4. 4.
    Rietschel, J.C., Goodman, R.N., King, B.R., Lo, L.-C., Contreras-Vidal, J.L., Hatfield, B.D.: Cerebral cortical dynamics and the quality of motor behavior during social evaluative challenge. Psychophysiology 48, 479–487 (2011)CrossRefGoogle Scholar
  5. 5.
    Hatfield, B.D., Hillman, C.H.: The Psychophysiology of Sport: A Mechanistic Understanding of the Psychology of Superior Performance. In: Singer, R.N., Hausenblas, H.A., Janelle, C. (eds.) Handbook of Sport Psychology, pp. 362–386. John Wiley & Sons, New York (2001)Google Scholar
  6. 6.
    Hatfield, B.D., Haufler, A.J., Hung, T.-M., Spalding, T.W.: Electroencephalographic Studies of Skilled Psychomotor Performance. Journal of Clinical Neurophysiology 21, 144–156 (2004)CrossRefGoogle Scholar
  7. 7.
    Kerick, S.E., Douglass, L.W., Hatfield, B.D.: Cerebral Cortical Adaptations Associated with Visuomotor Practice. Medicine and Science in Sports and Exercise 36, 118–129 (2004)CrossRefGoogle Scholar
  8. 8.
    Hatfield, B.D., Costanzo, M.E., Goodman, R.N., Lo, L., Oh, H., Rietschel, J.C., Saffer, M., Bradberry, T., Contreras-Vidal, J.L., Haufler, A.J.: The Influence of Social Evaluation on Cerebral Cortical Activity and Motor Performance: A Study of “Real-Life” Competition (submitted for publication) Google Scholar
  9. 9.
    Masters, R., Maxwell, J.: The theory of reinvestment. International Review of Sport and Exercise Psychology 1, 160–183 (2008)CrossRefGoogle Scholar
  10. 10.
    Rietschel, J.C., Miller, M.W., Gentili, R.J., Goodman, R.N., McDonald, C.G., Hatfield, B.D.: Cerebral-cortical networking and activation increase as a function of cognitive-motor task difficulty. Biological Psychology 90, 127–133 (2012)CrossRefGoogle Scholar
  11. 11.
    Pascual-Marqui, R.D.: Standardized low resolution brain electromagnetic tomography (sLORETA): technical details. Methods and Findings in Experimental and Clinical Pharmacology 24(suppl.D), 5–12 (2002)Google Scholar
  12. 12.
    Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M.: Brainstorm: AUser-Friendly Application forMEG/EEG Analysis. Computational Intelligence and Neuroscience 2011, 879716 (2011)CrossRefGoogle Scholar
  13. 13.
    Jurcak, V., Tsuzuki, D., Dan, I.: 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems. NeuroImage 34, 1600–1611 (2007)CrossRefGoogle Scholar
  14. 14.
    Fuchs, M., Kastner, J., Wagner, M., Hawes, S., Ebersole, J.S.: A standardized boundary element method volume conductor model. Clinical Neurophysiology 113, 702–712 (2002)CrossRefGoogle Scholar
  15. 15.
    Lancaster, J.L., Woldorff, M.G., Parsons, L.M., Liotti, M., Freitas, C.S., Rainey, L., Kochunov, P.V., Nickerson, D., Mikiten, S.A., Fox, P.T.: Automated Talairach Atlas Labels For Functional Brain Mapping. Human Brain Mapping 10, 120–131 (2000)CrossRefGoogle Scholar
  16. 16.
    Kybic, J., Clerc, M., Abboud, T., Faugeras, O., Keriven, R., Papadopoulo, T.: A Common Formalism for the Integral Formulations of the Forward EEG Problem. IEEE Transactions on Medical Imaging 24, 12–28 (2005)CrossRefGoogle Scholar
  17. 17.
    Kerick, S.E., McDowell, K., Hung, T.-M., Santa Maria, D.L., Spalding, T.W., Hatfield, B.D.: The role of the left temporal region under the cognitive motor demands of shooting in skilled marksmen. Biological Psychology 58, 263–277 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hyuk Oh
    • 1
    • 2
  • Rodolphe J. Gentili
    • 1
    • 2
    • 3
  • Michelle E. Costanzo
    • 1
    • 2
    • 4
  • Ronald N. Goodman
    • 1
    • 2
    • 5
  • Li-Chuan Lo
    • 2
  • Jeremy C. Rietschel
    • 1
    • 2
    • 5
  • Mark Saffer
    • 1
    • 2
  • Bradley D. Hatfield
    • 1
    • 2
  1. 1.Neuroscience and Cognitive Science ProgramUniversity of MarylandCollege ParkUSA
  2. 2.Department of KinesiologyUniversity of MarylandCollege ParkUSA
  3. 3.Maryland Robotics CenterUniversity of MarylandCollege ParkUSA
  4. 4.Uniformed Services University of the Health SciencesBethesdaUSA
  5. 5.Baltimore VA Medical CenterBaltimoreUSA

Personalised recommendations