A Translational Approach to Neurotechnology Development

  • Kaleb McDowell
  • Anthony Ries
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8027)


The past several decades have seen an explosion of meaningful and nuanced insights into the connection between human behavior and the nervous system; however, the translation of these insights into viable applications is a non-trivial and widely acknowledged challenge. Recent advancements in brain-computer interaction and real-world neuroimaging technologies have provided major breakthroughs that provide the underpinnings for translational neuroscience research efforts. This session focuses on building off of those advancements and specifically proposes three concepts necessary for overcoming the challenges of translation: 1) integrating aspects of knowledge of brain function that are generally separate into single analyses, 2) increasing situational complexity, and 3) continuing to develop neuroimaging tools specifically for use in real-world environments.


Translational Neuroscience Neurotechnology Brain-Computer Interface (BCI) Electroencephalography (EEG) Neural Classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Scimago Journal & Country Rank,
  2. 2.
    Social, behavioral, and economic research in the federal context: report of the National Science and Technology Council Subcommittee on Social, Behavioral, and Economic Sciences (January 2009) Google Scholar
  3. 3.
    Committee on Opportunities in Neuroscience for Future Army Applications; National Research Council: Opportunities in Neuroscience for Future Army Applications. The National Academies Press, Washington, D.C (2009)Google Scholar
  4. 4.
    Lance, B.J., Kerick, S.E., Ries, A.J., Oie, K.S., McDowell, K.: Brain-Computer Interface Technologies in the Coming Decades. Proceedings of the IEEE 100, 1585–1599 (2012)CrossRefGoogle Scholar
  5. 5.
    Academic Health Centers: Leading Change in the 21st Century,
  6. 6.
    Kingstone, A., Smilek, D., Ristic, J., Friesen, C.K., Eastwood, J.D.: Attention, Researchers! It Is Time to Take a Look at the Real World. Current Directions in Psychological Science 12, 176–180 (2003)CrossRefGoogle Scholar
  7. 7.
    Kerick, S.E., McDowell, K.: Understanding brain, cognition, and behavior in complex dynamic environments. In: Schmorrow, D.D., Estabrooke, I.V., Grootjen, M. (eds.) Augmented Cognition, HCII 2009. LNCS, vol. 5638, pp. 35–41. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Edelman, G.M., Gally, J.A.: Degeneracy and complexity in biological systems. PNAS 98, 13763–13768 (2001)CrossRefGoogle Scholar
  9. 9.
    Gibson, J.J.: The theory of affordances. In: Perceiving, Acting, and Knowing. Towards an Ecological Psychology. John Wiley & Sons Inc., Hoboken (1977)Google Scholar
  10. 10.
    Gevins, A., Leong, H., Du, R., Smith, M.E., Le, J., DuRousseau, D., Zhang, J., Libove, J.: Towards measurement of brain function in operational environments. Biological Psychology 40, 169–186 (1995)CrossRefGoogle Scholar
  11. 11.
    Wolpaw, J., Birbaumer, N., McFarland, D., Pfurtscheller, G., Vaughan, T.: Brain-computer interfaces for communication and control. Clinical Neurophysiology 113, 767–791 (2002)CrossRefGoogle Scholar
  12. 12.
    Lance, B.J., Kerick, S.E., Ries, A.J., Oie, K.S., McDowell, K.: Brain Computer Interface Technologies in the Coming Decades. arXiv:1211.0886 (2012)Google Scholar
  13. 13.
    Nijholt, A., Tan, D.: Playing with your brain: brain-computer interfaces and games. In: Proceedings of the International Conference on Advances in Computer Entertainment Technology, pp. 305–306. ACM Press, New York (2007)CrossRefGoogle Scholar
  14. 14.
    Show Your Mood with Brain-Controlled “Necomimi” Cat Ears -,
  15. 15.
    Sajda, P., Pohlmeyer, E., Wang, J., Parra, L.C., Christoforou, C., Dmochowski, J., Hanna, B., Bahlmann, C., Singh, M.K., Chang, S.-F.: In a Blink of an Eye and a Switch of a Transistor: Cortically Coupled Computer Vision. Proceedings of the IEEE 98, 462–478 (2010)CrossRefGoogle Scholar
  16. 16.
    Poolman, P., Frank, R.M., Luu, P., Pederson, S.M., Tucker, D.M.: A single-trial analytic framework for EEG analysis and its application to target detection and classification. Neuroimage 42, 787–798 (2008)CrossRefGoogle Scholar
  17. 17.
    Wolpaw, J.R.: Brain–computer interfaces as new brain output pathways. J. Physiol. 579, 613–619 (2007)CrossRefGoogle Scholar
  18. 18.
    Zander, T.O., Kothe, C.: Towards passive brain–computer interfaces: applying brain–computer interface technology to human–machine systems in general. Journal of Neural Engineering 8, 025005 (2011)CrossRefGoogle Scholar
  19. 19.
    Schmorrow, D.: Foundations of Augmented Cognition. Erlbaum (2005)Google Scholar
  20. 20.
    Liao, L.-D., Lin, C.-T., McDowell, K., Wickenden, A.E., Gramann, K., Jung, T.-P., Ko, L.-W., Chang, J.-Y.: Biosensor Technologies for Augmented Brain-Computer Interfaces in the Next Decades. Proceedings of the IEEE 100, 1553–1566 (2012)CrossRefGoogle Scholar
  21. 21.
    Makeig, S., Kothe, C., Mullen, T., Bigdely-Shamlo, N., Zhang, Z., Kreutz-Delgado, K.: Evolving Signal Processing for Brain-Computer Interfaces. Proceedings of the IEEE 100, 1567–1584 (2012)CrossRefGoogle Scholar
  22. 22.
    Marathe, A., Ries, A.J., McDowell, K.: A novel method for single-trial classification in the face of temporal variability. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) Augmented Cognition, HCII 2013. LNCS (LNAI), vol. 8027, pp. 345–352. Springer, Heidelberg (2013)Google Scholar
  23. 23.
    Touryan, J., Apker, G., Kerick, S., Lance, B., Ries, A.J., McDowell, K.: Translation of EEG-based performance prediction models to rapid serial visual presentation tasks. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) Augmented Cognition, HCII 2013. LNCS (LNAI), vol. 8027, pp. 521–530. Springer, Heidelberg (2013)Google Scholar
  24. 24.
    Lin, C.-T., Wu, R.-C., Jung, T.-P., Liang, S.-F., Huang, T.-Y.: Estimating Driving Performance Based on EEG Spectrum Analysis. EURASIP Journal on Advances in Signal Processing 2005, 521368 (2005)CrossRefGoogle Scholar
  25. 25.
    Apker, G., Lance, B., Kerick, S., McDowell, K.: Combined linear regression and quadratic classification approach for an EEG-based prediction of driver performance. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) Augmented Cognition, HCII 2013. LNCS (LNAI), vol. 8207, pp. 231–240. Springer, Heidelberg (2013)Google Scholar
  26. 26.
    Touryan, J., Ries, A.J., Weber, P., Gibson, L.: Integration of automated neural processing into an army-relevant multitasking simulation environment. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) Augmented Cognition, HCII 2013. LNCS (LNAI), vol. 8027, pp. 790–798. Springer, Heidelberg (2013)Google Scholar
  27. 27.
    Kellihan, B., Doty, T.J., Hairston, W.D., Canady, J., Whitaker, K.W., Lin, C.-T., Jung, T.-P., McDowell, K.: A real-world neuroimaging system to evaluate stress. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) Augmented Cognition, HCII 2013. LNCS (LNAI), vol. 8027, pp. 316–325. Springer, Heidelberg (2013)Google Scholar
  28. 28.
    Zanstra, Y.J., Johnston, D.W.: Cardiovascular reactivity in real life settings: measurement, mechanisms and meaning. Biol. Psychol. 86, 98–105 (2011)CrossRefGoogle Scholar
  29. 29.
    Lawhern, V., Hairston, W.D., Robbins, K.: Optimal feature selection for artifact classification in EEG time series. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) Augmented Cognition, HCII 2013. LNCS (LNAI), vol. 8027, pp. 326–334. Springer, Heidelberg (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kaleb McDowell
    • 1
  • Anthony Ries
    • 1
  1. 1.Human Research and Engineering DirectorateU.S. Army Research LaboratoryUSA

Personalised recommendations