A Novel Method for Single-Trial Classification in the Face of Temporal Variability

  • Amar R. Marathe
  • Anthony J. Ries
  • Kaleb McDowell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8027)


Machine learning techniques have been used to classify patterns of neural data obtained from electroencephalography (EEG) to increase human-system performance. This classification approach works well in controlled laboratory settings since many of the machine learning techniques used often rely on consistent neural responses and behavioral performance over time. Moving to more dynamic, unconstrained environments, however, introduces temporal variability in the neural response resulting in sub-optimal classification performance. This study describes a novel classification method that accounts for temporal variability in the neural response to increase classification performance. Specifically, using sliding windows in hierarchical discriminant component analysis (HDCA), we demonstrate a decrease in classification error by over 50% when compared to other state-of-the-art classification methods.


Brain-Computer Interface (BCI) Rapid Serial Visual Presentation (RSVP) Electroencephalography (EEG) HDCA Sliding HDCA Temporal Variability Single-trial Real-world environment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kammer, T., Lehr, L., Kirschfeld, K.: Cortical visual processing is temporally dispersed by luminance in human subjects. Neuroscience Letters 263, 133–136 (1999)CrossRefGoogle Scholar
  2. 2.
    Folstein, J.R., Van Petten, C.: After the P3: Late executive processes in stimulus categorization. Psychophysiology 48, 825–841 (2011)CrossRefGoogle Scholar
  3. 3.
    Craig, A., Tran, Y., Wijesuriya, N., Nguyen, H.: Regional brain wave activity changes associated with fatigue. Psychophysiology 49, 574–582 (2012)CrossRefGoogle Scholar
  4. 4.
    Lal, S.K.L., Craig, A.: Driver fatigue: Electroencephalography and psychological assessment. Psychophysiology 39, 313–321 (2002)CrossRefGoogle Scholar
  5. 5.
    Magliero, A., Bashore, T.R., Coles, M.G.H., Donchin, E.: On the Dependence of P300 Latency on Stimulus Evaluation Processes. Psychophysiology 21, 171–186 (1984)CrossRefGoogle Scholar
  6. 6.
    Dien, J., Spencer, K.M., Donchin, E.: Parsing the late positive complex: Mental chronometry and the ERP components that inhabit the neighborhood of the P300. Psychophysiology 41, 665–678 (2004)CrossRefGoogle Scholar
  7. 7.
    Gerson, A.D., Parra, L.C., Sajda, P.: Cortically coupled computer vision for rapid image search. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14, 174–179 (2006)CrossRefGoogle Scholar
  8. 8.
    Tomioka, R., Aihara, K., Müller, K.R.: Logistic regression for single trial EEG classification. Advances in Neural Information Processing Systems 19, 1377–1384 (2007)Google Scholar
  9. 9.
    Parra, L.C., Christoforou, C., Gerson, A.D., Dyrholm, M., Luo, A., Wagner, M., Philiastides, M.G., Sajda, P.: Spatiotemporal Linear Decoding of Brain State. IEEE Signal Processing Magazine 25, 107–115 (2008)CrossRefGoogle Scholar
  10. 10.
    Sajda, P., Pohlmeyer, E., Wang, J., Parra, L.C., Christoforou, C., Dmochowski, J., Hanna, B., Bahlmann, C., Singh, M.K., Chang, S.-F.: In a Blink of an Eye and a Switch of a Transistor: Cortically Coupled Computer Vision. Proceedings of the IEEE 98, 462–478 (2010)CrossRefGoogle Scholar
  11. 11.
    Pohlmeyer, E.A., Wang, J., Jangraw, D.C., Lou, B., Chang, S.-F., Sajda, P.: Closing the loop in cortically-coupled computer vision: a brain–computer interface for searching image databases. Journal of Neural Engineering 8, 036025 (2011)CrossRefGoogle Scholar
  12. 12.
    Ramoser, H., Muller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Transactions on Rehabilitation Engineering 8, 441–446 (2000)CrossRefGoogle Scholar
  13. 13.
    Lemm, S., Blankertz, B., Curio, G., Muller, K.-R.: Spatio-spectral filters for improving the classification of single trial EEG. IEEE Transactions on Biomedical Engineering 52, 1541–1548 (2005)CrossRefGoogle Scholar
  14. 14.
    Dornhege, G., Blankertz, B., Krauledat, M., Losch, F., Curio, G., Muller, K.-R.: Combined Optimization of Spatial and Temporal Filters for Improving Brain-Computer Interfacing. IEEE Transactions on Biomedical Engineering 53, 2274–2281 (2006)CrossRefGoogle Scholar
  15. 15.
    Tomioka, R., Dornhege, G., Nolte, G., Blankertz, B., Aihara, K., Müller, K.R.: Spectrally weighted common spatial pattern algorithm for single trial EEG classification. Dept. Math. Eng., Univ. Tokyo, Tokyo, Japan, Tech. Rep. 40 (2006) Google Scholar
  16. 16.
    Wu, W., Gao, X., Hong, B., Gao, S.: Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL). IEEE Trans. Biomed. Eng. 55, 1733–1743 (2008)CrossRefGoogle Scholar
  17. 17.
    Farquhar, J.: A linear feature space for simultaneous learning of spatio-spectral filters in BCI. Neural Networks 22, 1278–1285 (2009)CrossRefGoogle Scholar
  18. 18.
    Cecotti, H., Rivet, B., Congedo, M., Jutten, C., Bertrand, O., Maby, E., Mattout, J.: A robust sensor-selection method for P300 brain–computer interfaces. Journal of Neural Engineering 8, 016001 (2011)CrossRefGoogle Scholar
  19. 19.
    Touryan, J., Gibson, L., Horne, J.H., Weber, P.: Real-Time Measurement of Face Recognition in Rapid Serial Visual Presentation. Front Psychol. 2 (2011)Google Scholar
  20. 20.
    Yu, K., Shen, K., Shao, S., Ng, W.C., Kwok, K., Li, X.: Common Spatio-Temporal Pattern for Single-Trial Detection of Event-Related Potential in Rapid Serial Visual Presentation Triage. IEEE Transactions on Biomedical Engineering 58, 2513–2520 (2011)CrossRefGoogle Scholar
  21. 21.
    Yu, K., Shen, K., Shao, S., Ng, W.C., Li, X.: Bilinear common spatial pattern for single-trial ERP-based rapid serial visual presentation triage. Journal of Neural Engineering 9, 046013 (2012)CrossRefGoogle Scholar
  22. 22.
    Ries, A.J., Larkin, G.B.: Stimulus and response-locked P3 activity in a dynamic RSVP task. ARL-TR-6314 (2012)Google Scholar
  23. 23.
    Touryan, J., Gibson, L., Horne, J.H., Weber, P.: Real-time classification of neural signals corresponding to the detection of targets in video imagery. Presented at the International Conference on Applied Human Factors and Ergonomics, Miami, Fl (2010)Google Scholar
  24. 24.
    Jung, T.-P., Makeig, S., Humphries, C., Lee, T.-W., McKeown, M.J., Iragui, V., Sejnowski, T.J.: Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37, 163–178 (2000)CrossRefGoogle Scholar
  25. 25.
    Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods 134, 9–21 (2004)CrossRefGoogle Scholar
  26. 26.
    Luck, S.J., Lopez-Calderon, J.: ERPLAB Toolbox (2010)Google Scholar
  27. 27.
    Luck, S.J.: An Introduction to the Event-Related Potential Technique. A Bradford Book (2005)Google Scholar
  28. 28.
    Poli, R., Cinel, C., Citi, L., Sepulveda, F.: Reaction-time binning: A simple method for increasing the resolving power of ERP averages. Psychophysiology 47, 467–485 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Amar R. Marathe
    • 1
  • Anthony J. Ries
    • 1
  • Kaleb McDowell
    • 1
  1. 1.US Army Research LaboratoryHuman Research and Engineering DirectorateUSA

Personalised recommendations