Advertisement

A Real-World Neuroimaging System to Evaluate Stress

  • Bret Kellihan
  • Tracy Jill Doty
  • W. David Hairston
  • Jonroy Canady
  • Keith W. Whitaker
  • Chin-Teng Lin
  • Tzyy-Ping Jung
  • Kaleb McDowell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8027)

Abstract

While the laboratory setting offers researchers a great deal of experimental control, this environment also limits how generalizable the results are to the real world. This is particularly true when studying the multifaceted phenomenon of stress, which often relies on personal experience, a dimension that is difficult to reproduce in the laboratory setting. This paper describes a novel, multi-aspect real-world integrated neuroimaging system (MARIN) optimized to study physiological phenomena in the real-world and particularly suited to the study of stress. This system integrates neurological data from a gel-free, wireless EEG device with physiological data from wireless cardiac and skin conductance sensors, as well as self-reports of activity and stress. Coordination of the system is managed through an Android handheld mobile device that also logs salient events and presents inventories for subjective reports of stress. The integration of these components creates a rich, multimodal dataset with minimal interference to the user’s daily life, and these data will guide the further understanding of neurological mechanisms of stress.

Keywords

wireless electroencephalography skin conductance response electrodermal activation heart-rate variability wearability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lamond, N., Dawson, D., Roach, G.D.: Fatigue assessment in the field: validation of a hand-held electronic psychomotor vigilance task. Aviat Space Environ. Med. 76, 486–489 (2005)Google Scholar
  2. 2.
    Tedeschi, J.T., Quigley, B.M.: Limitations of laboratory paradigms for studying aggression. Aggression and Violent Behavior 1, 163–177 (1996)CrossRefGoogle Scholar
  3. 3.
    Levitt, S.D., List, J.A.: What Do Laboratory Experiments Measuring Social Preferences Reveal About the Real World? The Journal of Economic Perspectives 21, 153–174 (2007)CrossRefGoogle Scholar
  4. 4.
    Selye, H.: The stress of life. McGraw-Hill (1956)Google Scholar
  5. 5.
    Chrousos, G.P.: Stress and disorders of the stress system. Nat. Rev. Endocrinol. 5, 374–381 (2009)CrossRefGoogle Scholar
  6. 6.
    McEwen, B.S.: Stress, adaptation, and disease. Allostasis and allostatic load. Ann. N. Y. Acad. Sci. 840, 33–44 (1998)CrossRefGoogle Scholar
  7. 7.
    Wilhelm, F.H., Grossman, P.: Emotions beyond the laboratory: Theoretical fundaments, study design, and analytic strategies for advanced ambulatory assessment. Biological Psychology 84, 552–569 (2010)CrossRefGoogle Scholar
  8. 8.
    Zanstra, Y.J., Johnston, D.W.: Cardiovascular reactivity in real life settings: measurement, mechanisms and meaning. Biol. Psychol. 86, 98–105 (2011)CrossRefGoogle Scholar
  9. 9.
    Cohen, S., Janicki-Deverts, D., Miller, G.E.: Psychological stress and disease. JAMA 298, 1685–1687 (2007)CrossRefGoogle Scholar
  10. 10.
    Aldwin, C.M., Molitor, N.-T., Spiro, A., Levenson, M.R., Molitor, J., Igarashi, H.: Do Stress Trajectories Predict Mortality in Older Men? Longitudinal Findings from the VA Normative Aging Study. Journal of Aging Research 2011, 1–10 (2011)CrossRefGoogle Scholar
  11. 11.
    Lantz, P.M., House, J.S., Mero, R.P., Williams, D.R.: Stress, Life Events, and Socioeconomic Disparities in Health: Results from the Americans’ Changing Lives Study. Journal of Health and Social Behavior 46, 274–288 (2005)CrossRefGoogle Scholar
  12. 12.
    Staal, M.A.: Stress, cognition, and human performance: A literature review and conceptual framework (2004)Google Scholar
  13. 13.
    Starcke, K., Brand, M.: Decision making under stress: a selective review. Neurosci. Biobehav Rev. 36, 1228–1248 (2012)CrossRefGoogle Scholar
  14. 14.
    Dawson, M.E., Schell, A.M., Filion, D.L.: The electrodermal system. In: Cacioppo, J.T., Tassinary, L.G., Berntson, G.G. (eds.) Handbook of Psychophysiology, 3rd edn., pp. 159–181. Cambridge University Press, New York (2007)Google Scholar
  15. 15.
    Healey, J.A., Picard, R.W.: Detecting stress during real-world driving tasks using physiological sensors. IEEE Transactions on Intelligent Transportation Systems 6, 156–166 (2005)CrossRefGoogle Scholar
  16. 16.
    Poh, M.Z., Swenson, N.C., Picard, R.W.: A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Transactions on Biomedical Engineering 57, 1243–1252 (2010)CrossRefGoogle Scholar
  17. 17.
    Liao, L.-D., Lin, C.-T.: Novel Trends in Biosensors Used for Electroencephalography Measurements in Neurocognitive Engineering Applications. Journal of Neuroscience and Neuroengineering 1, 32–41 (2012)CrossRefGoogle Scholar
  18. 18.
    Hosseini, S.A., Khalilzadeh, M.A.: Emotional stress recognition system using EEG and psychophysiological signals: Using new labelling process of EEG signals in emotional stress state. In: 2010 International Conference on Biomedical Engineering and Computer Science (ICBECS), pp. 1–6 (2010)Google Scholar
  19. 19.
    Hamid, N.H.A., Sulaiman, N., Aris, S.A.M., Murat, Z.H., Taib, M.N.: Evaluation of human stress using EEG Power Spectrum. In: 2010 6th International Colloquium on Signal Processing and Its Applications (CSPA), pp. 1–4 (2010)Google Scholar
  20. 20.
    Sulaiman, N., Taib, M.N., Lias, S., Murat, Z.H., Aris, S.A.M., Mustafa, M., Rashid, N.A.: Development of EEG-based stress index. In: 2012 International Conference on Biomedical Engineering (ICoBE), pp. 461–466 (2012)Google Scholar
  21. 21.
    Sulaiman, N., Taib, M.N., Lias, S., Murat, Z.H., Mustafa, M., Aris, S.A.M., Rashid, N.A.: Electroencephalogram-Based Stress Index. Journal of Medical Imaging and Health Informatics 2, 327–335 (2012)CrossRefGoogle Scholar
  22. 22.
    Wilhelm, F.H., Roth, W.T., Sackner, M.A.: The lifeShirt. An advanced system for ambulatory measurement of respiratory and cardiac function. Behav. Modif. 27, 671–691 (2003)CrossRefGoogle Scholar
  23. 23.
    Lin, C.-T., Liao, L.-D., Liu, Y.-H., Wang, I.-J., Lin, B.-S., Chang, J.-Y.: Novel Dry Polymer Foam Electrodes for Long-Term EEG Measurement. IEEE Transactions on Biomedical Engineering 58, 1200–1207 (2011)CrossRefGoogle Scholar
  24. 24.
    Gramann, K., Gwin, J.T., Ferris, D.P., Oie, K., Jung, T.-P., Lin, C.-T., Liao, L.-D., Makeig, S.: Cognition in action: imaging brain/body dynamics in mobile humans. Rev. Neurosci. 22, 593–608 (2011)Google Scholar
  25. 25.
    Jung, T.-P., Makeig, S., Humphries, C., Lee, T.-W., McKeown, M.J., Iragui, V., Sejnowski, T.J.: Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37, 163–178 (2000)CrossRefGoogle Scholar
  26. 26.
    Cella, D.F., Perry, S.W.: Reliability and concurrent validity of three visual-analogue mood scales. Psychol. Rep. 59, 827–833 (1986)CrossRefGoogle Scholar
  27. 27.
    Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In: Hancock, P.A., Meshkati, N. (eds.) Advances in Psychology, pp. 139–183. North-Holland (1988)Google Scholar
  28. 28.
    Monk, T.H., Reynolds, C.F., Kupfer III, D.J., Buysse, D.J., Coble, P.A., Hayes, A.J., Machen, M.A., Petrie, S.R., Ritenour, A.M.: The Pittsburgh Sleep Diary. J. Sleep Res. 3, 111–120 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bret Kellihan
    • 1
  • Tracy Jill Doty
    • 2
  • W. David Hairston
    • 2
  • Jonroy Canady
    • 1
  • Keith W. Whitaker
    • 2
  • Chin-Teng Lin
    • 3
  • Tzyy-Ping Jung
    • 4
  • Kaleb McDowell
    • 2
  1. 1.Intelligent Systems DepartmentDCS CorporationAlexandriaUSA
  2. 2.Human Research and Engineering DirectorateArmy Research LaboratoryUSA
  3. 3.Department of Electrical Engineering and the Brain Research CenterNational Chiao Tung UniversityHsinchuTaiwan
  4. 4.Swartz Center for Computational Neuroscience, Institute for Neural ComputationUniversity of California at San DiegoLa JollaUSA

Personalised recommendations