Functional Near-Infrared Spectroscopy in Addiction Treatment: Preliminary Evidence as a Biomarker of Treatment Response

  • Scott C. Bunce
  • Jonathan Harris
  • Kurtulus Izzetoglu
  • Hasan Ayaz
  • Meltem Izzetoglu
  • Kambiz Pourrezaei
  • Banu Onaral
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8027)


There is growing evidence that there are functional changes in the brains of individuals with substance use disorders. Numerous studies utilizing functional magnetic resonance imaging (fMRI) have shown that drug cues elicit increased regional blood flow in reward-related brain areas among addicted participants that is not found among normal controls. This finding has prompted leading investigators to suggest fMRI might be useful as a diagnostic or prognostic biomarker of addiction severity. However, fMRI is too costly for routine use in most treatment facilities. Functional near-infrared spectroscopy (fNIRs) offers an alternative neuroimaging modality that is safe, affordable, and patient-friendly. This manuscript reviews evidence that fNIRs can be used to differentiate prefrontal cortical responses of current alcohol dependent participants from alcohol dependent patients in treatment for 90-180 days. Differential responses to both alcohol and natural reward cues in both groups suggests fNIRs might serve as a clinic-friendly neuroimaging technology to inform clinical practice.


Addiction alcoholism neuroimaging functional near infrared spectroscopy fNIRs functional magnetic resonance imaging fMRI biomarker 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goldstein, R.Z., Volkow, N.D.: Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 12, 652–669 (2011)CrossRefGoogle Scholar
  2. 2.
    Koob, G.F., Volkow, N.D.: Neurocircuitry of Addiction. Neuropsychopharmacol 35, 217–238 (2010)CrossRefGoogle Scholar
  3. 3.
    Reske, M., Paulus, M.P.: The diagnostic and therapeutic potential of neuroimaging in addiction. In: Bryon, A., Stein, E.A. (eds.), pp. 319–343. John Wiley & Sons, Ltd., Chichester (2011)Google Scholar
  4. 4.
    O’Brien, C.: A potential biomarker for addiction. Neuropsychopharmacol 38, S17 (2012)Google Scholar
  5. 5.
    Volkow, N.D., Wang, G.J., Fowler, J., Tomasi, D.: Addiction circuitry in the human brain. Annu Rev. Pharmacol. Toxicol. 52, 321–336 (2012)CrossRefGoogle Scholar
  6. 6.
    Boas, D.A., Gaudette, T., Strangman, G., Cheng, X., Marota, J.J.A., Mandeville, J.B.: The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics. Neuroimage 13, 76–90 (2001)CrossRefGoogle Scholar
  7. 7.
    Chance, B., Zhuang, Z., UnAh, C., Alter, C., Lipton, L.: Cognition-activated low-frequency modulation of light absorption in human brain. Proc. Natl. Acad. Sci. USA 90, 3770–3774 (1993)CrossRefGoogle Scholar
  8. 8.
    Chance, B., Anday, E., Nioka, S., Zhou, S., Hong, L., Worden, K., Li, C., Murray, T., Ovetsky, Y., Pidikiti, D.: A novel method for fast imaging of brain function, non-invasively, with light. Opt. Express 2, 411–423 (1998)CrossRefGoogle Scholar
  9. 9.
    Obrig, H., Villringer, A.: Near-infrared spectroscopy in functional activation studies. Can NIRS demonstrate cortical activation? Adv. Exp. Med. Biol. 413, 113–127 (1997)Google Scholar
  10. 10.
    Villringer, A., Chance, B.: Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci. 20, 435–442 (1997)CrossRefGoogle Scholar
  11. 11.
    Ayaz, M., Izzetoglu, P., Shewokis, A., Onaral, B.: Sliding-window Motion Artifact Rejection for Functional Near-Infrared Spectroscopy. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 6567–6570 (2010)Google Scholar
  12. 12.
    Izzetoglu, K.: Neural correlates of cognitive workload and anesthetic depth: fNIRs spectroscopy investigation in humans. (Doctoral Dissertation) Retreived from Drexel E-Repository and Archives (iDEA) (2008),
  13. 13.
    Izzetoglu, M., Chitrapu, P., Bunce, S., Onaral, B.: Motion artifact cancellation in NIR spectroscopy using discrete Kalman filtering. Biomed. Eng. Online 9, 16 (2010)CrossRefGoogle Scholar
  14. 14.
    Chance, B., Leigh, J., Miyake, H., Smith, D., Nioka, S., Greenfeld, R., Finander, M., Kaufmann, K., Levy, W., Young, M.: Comparison of time-resolved and-unresolved measurements of deoxyhemoglobin in brain. Proc. Natl. Acad. Sci. USA 85, 4971 (1988)CrossRefGoogle Scholar
  15. 15.
    Koob, G.F., Le Moal, M.: Drug abuse: Hedonic homeostatic dysregulation. Science 278, 52–58 (1997)CrossRefGoogle Scholar
  16. 16.
    Bossert, J.M., Ghitza, U.E., Lu, L., Epstein, D.H., Shaham, Y.: Neurobiology of relapse to heroin and cocaine seeking: An update and clinical implications. Eur. J. Pharmacol. 526, 36–50 (2005)CrossRefGoogle Scholar
  17. 17.
    Volkow, N.D., Fowler, J.S., Wang, G.J.: The addicted human brain viewed in the light of imaging studies: Brain circuits and treatment strategies. Neuropharmacology 47(suppl.1), 3–13 (2004)CrossRefGoogle Scholar
  18. 18.
    Wilson, S.J., Sayette, M.A., Fiez, J.A.: Prefrontal responses to drug cues: A neurocognitive analysis. Nat. Neurosci. 7, 211–214 (2004)CrossRefGoogle Scholar
  19. 19.
    Liu, C., Showalter, J., Grigson, P.S.: Ethanol-induced conditioned taste avoidance: Reward or aversion? Alcohol Clin. Exp. Res. 33, 522–530 (2009)CrossRefGoogle Scholar
  20. 20.
    Yang, Z., Xie, J., Shao, Y.C., Xie, C.M., Fu, L.P., Li, D.J., Fan, M., Ma, L., Li, S.J.: Dynamic neural responses to cue-reactivity paradigms in heroin-dependent users: An fMRI study. Hum. Brain Mapp. 30, 766–775 (2009)CrossRefGoogle Scholar
  21. 21.
    Zijlstra, F., Veltman, D.J., Booij, J., van den Brink, W., Franken, I.H.: Neurobiological substrates of cue-elicited craving and anhedonia in recently abstinent opioid-dependent males. Drug Alcohol. Depend 99, 183–192 (2009)CrossRefGoogle Scholar
  22. 22.
    Blum, K., Braverman, E.R., Holder, J.M., Lubar, J.F., Monastra, V.J., Miller, D., Lubar, J.O., Chen, T.J., Comings, D.E.: Reward deficiency syndrome: A biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J. Psychoactive Drugs 32(suppl. i-iv), 1–112 (2000)Google Scholar
  23. 23.
    Goldstein, R.Z., Volkow, N.D.: Drug addiction and its underlying neurobiological basis: Neuroimaging evidence for the involvement of the frontal cortex. Am. J. Psychiatry 159, 1642–1652 (2002)CrossRefGoogle Scholar
  24. 24.
    Robinson, T.E., Berridge, K.C.: The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Res. Brain Res. Rev. 18, 247–291 (1993)CrossRefGoogle Scholar
  25. 25.
    Robinson, T.E., Berridge, K.C.: Addiction. Annu. Rev. Psychol. 54, 25–53 (2003)CrossRefGoogle Scholar
  26. 26.
    Townshend, J.M., Duka, T.: Attentional bias associated with alcohol cues: Differences between heavy and occasional social drinkers. Psychopharmacol 157, 67–74 (2001)CrossRefGoogle Scholar
  27. 27.
    Cabeza, R., Nyberg, L.: Imaging cognition II: An empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 12, 1–47 (2000)CrossRefGoogle Scholar
  28. 28.
    Mucha, R.F., Geier, A., Pauli, P.: Modulation of craving by cues having differential overlap with pharmacological effect: Evidence for cue approach in smokers and social drinkers. Psychopharmacol 147, 306–313 (1999)CrossRefGoogle Scholar
  29. 29.
    Mogg, K., Bradley, B.P., Field, M., De Hower, J.: Eye movements to smoking-related pictures in smokers: Relationship between attentional biases and implicit and explicit measures of stimulus valence. Addiction 98, 825–836 (2003)CrossRefGoogle Scholar
  30. 30.
    Field, M., Mogg, K., Zetteler, J., Bradley, B.P.: Attentional biases for alcohol cues in heavy and light social drinkers: The roles of initial orienting and maintained attention. Psychopharmacol 176, 88–93 (2004)CrossRefGoogle Scholar
  31. 31.
    Kenny, P.J., Polis, I., Koob, G.F., Markou, A.: Low dose cocaine self-administration transiently increases but high dose cocaine persistently decreases brain reward function in rats. Eur. J. Neurosci. 17, 191–195 (2003)CrossRefGoogle Scholar
  32. 32.
    Childress, A.R., Ehrman, R.N., Wang, Z., Li, Y., Sciortino, N., Hakun, J., Jens, W., Suh, J., Listerud, J., Marquez, K., Franklin, T., Langleben, D., Detre, J., O’Brien, C.P.: Prelude to passion: limbic activation by “unseen” drug and sexual cues. PLoS One 3, 1506 (2008)CrossRefGoogle Scholar
  33. 33.
    Phillips, M.L., Drevets, W.C., Rauch, S.L., Lane, R.: Neurobiology of emotion perception I: The neural basis of normal emotion perception. Biol. Psychiatry 54, 504–514 (2003)CrossRefGoogle Scholar
  34. 34.
    Grüsser, S.M., Wrase, J., Klein, S., Hermann, D., Smolka, M.N., Ruf, M., Weber-Fahr, W., Flor, H., Mann, K., Braus, D.F.: Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacol 175, 296–302 (2004)CrossRefGoogle Scholar
  35. 35.
    Heinz, A., Wrase, J., Kahnt, T., Beck, A., Bromand, Z., Grüsser, S.M., Kienast, T., Smolka, M.N., Flor, H., Mann, K.: Brain activation elicited by affectively positive stimuli is associated with a lower risk of relapse in detoxified alcoholic subjects. Alcoholism: Clin Exp. Res. 31, 1138–1147 (2007)CrossRefGoogle Scholar
  36. 36.
    Janes, A.C., Pizzagalli, D.A., Richardt, S.: Brain reactivity to smoking cues prior to smoking cessation predicts ability to maintain tobacco abstinence. Biol Psychiatry 67, 722–729 (2010)CrossRefGoogle Scholar
  37. 37.
    Paulus, M.P., Tapert, S.F., Schuckit, M.A.: Neural activation patterns of methamphetamine-dependent subjects during decision making predict relapse. Arch Gen Psychiatry 62, 761–768 (2005)CrossRefGoogle Scholar
  38. 38.
    Bunce, S.C., Izzetoglu, K., Izzetoglu, M., Ayaz, H., Pourrezaei, K., Onaral, B.: Treatment Status Predicts Differential Prefrontal Cortical Responses to Alcohol and Natural Reinforcer Cues among Alcohol Dependent Individuals. In: Zhang, H., Hussain, A., Liu, D., Wang, Z. (eds.) BICS 2012. LNCS, vol. 7366, pp. 183–191. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  39. 39.
    Miller, W.R.: Form 90: A Structured Assessment Interview for Drinking and Related Behaviors (Test Manual). NIAAA Project MATCH Monograph Series, vol. 5. NIH Publication No. 96-4004. Natl. Inst. Alcohol Abuse Alcoholism, Bethesda (1996)Google Scholar
  40. 40.
    Miller, W.R., Hester, R.K.: Inpatient alcoholism treatment: Who benefits? Am. Psychol. 41, 794 (1986)CrossRefGoogle Scholar
  41. 41.
    Emrick, C.D.: A review of psychologically oriented treatment of alcoholism: I. The use and interrelationships of outcome criteria and drinking behavior following treatment. Quar. J. Stud. Alcohol. 35, 523–549 (1974)Google Scholar
  42. 42.
    Hunt, W.A., Barnett, L.W., Branch, L.G.: Relapse rates in addiction programs. J. Clin. Psychol. 27, 455–456 (1971)CrossRefGoogle Scholar
  43. 43.
    Sullivan, J.T., Sykora, K., Schneiderman, J., Naranjo, C.A., Sellers, E.M.: Assessment of Alcohol Withdrawal: the revised clinical institute withdrawal assessment for alcohol scale (CIWA-Ar). Brit. J. Addiction 84, 1353–1357 (1989)CrossRefGoogle Scholar
  44. 44.
    Okamoto, M., Dan, H., Sakamoto, K., Takeo, K., Shimizu, K., Kohno, S., Oda, I., Isobe, S., Suzuki, T., Kohyama, K.: Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping. Neuroimage 21, 99–111 (2004)CrossRefGoogle Scholar
  45. 45.
    Bunce, S.C., Bixler, E.O., Harris, J., Meyer, R.E.: A clinical laboratory model of allostasis of the brain reward system diurnal cortisol and sleep in recently detoxified opioid dependent patients, normal control subjects & patients drug free for 60-90 days. Neuropsychopharmacol 38, S444–S445 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Scott C. Bunce
    • 1
    • 2
    • 3
  • Jonathan Harris
    • 1
  • Kurtulus Izzetoglu
    • 2
    • 3
  • Hasan Ayaz
    • 2
    • 3
  • Meltem Izzetoglu
    • 2
    • 3
  • Kambiz Pourrezaei
    • 2
    • 3
  • Banu Onaral
    • 2
    • 3
  1. 1.Penn State College of MedicineHersheyUSA
  2. 2.Drexel University School of Biomedical Engineering, Sciences, and Health SystemsDrexel UniversityPhiladelphiaUSA
  3. 3.Cognitive Neuroengineering and Quantitative Experimental Research CollaborativeDrexel UniversityPhiladelphiaUSA

Personalised recommendations