Advertisement

Neurophysiological Predictors of Team Performance

  • Robin R. Johnson
  • Chris Berka
  • David Waldman
  • Pierre Balthazard
  • Nicola Pless
  • Thomas Maak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8027)

Abstract

Objective: To identify benchmark neurophysiological measures that predict performance at a teaming level. Advanced Brain Monitoring has a track record of success in identifying neurophysiological metrics that impact expert behavior. For example, we characterized negative and positive predictors for marksmanship skill; persons with higher HF:LF Norm metrics of Heart rate variability (HRV, an indication of anxiety) during a benchmarking auditory passive vigilance task did not achieve expert marksman performance while those with above average visuospatial processing ability achieved greater levels of expertise. In the current research, we explored the ability of benchmark neurophysiological metrics to predict team performance in two large scale studies. Significance: Identifying neurophysiological metrics of teaming ability and performance as part of a team can provide potential screening mechanisms or developmental data to help build optimal teams and improve team interactions for different types of contexts in which teams may operate.

Keywords

leadership neurophysiology qEEG prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Waldman, D.A., Balthazard, P.A., Peterson, S.J.: Social Cognitive Neuroscience and Leadership. The Leadership Quarterly 22(6), 1092–1106 (2011)CrossRefGoogle Scholar
  2. 2.
    Stevens, R., et al.: Modeling the Neurodynamic Complexity of Submarine Navigation Teams. Computational and Mathematical Organization Theory (2012)Google Scholar
  3. 3.
    Balthazard, P.: Virtual version ethical decision challenge by R. A. Cooke. Human Synergistics/Center for Applied Research, Arlington Heights (2000)Google Scholar
  4. 4.
    Cooke, R.A.: The ethical decision challenge. Human Synergistics/Center for Applied Research, Arlington Heights (1994)Google Scholar
  5. 5.
    Pless, N., Maak, T.: Addressing Child Labour in Bangladesh. In: Stahl, G.K., Menderhall, M.E., Oddou, G.R. (eds.) Readings and Cases in International Human Resource Management and Organizational Behavior, 5th edn. Routledge, London (2011)Google Scholar
  6. 6.
    Balthazard, P.A., Waldman, D.A., Warren, J.E.: Predictors of the Emergence of Transformational Leadership in Virtual Decision Teams. The Leadership Quarterly 20(5), 651–663 (2009)CrossRefGoogle Scholar
  7. 7.
    Bass, B.M., Avolio, B.J.: The Multifactor Leadership Questionnaire. Consulting Psychologists Press, Palo Alto (1990)Google Scholar
  8. 8.
    Carson, J.B., Tesluk, P.E., Marrone, J.A.: Shared Leadership in Teams: An Investigation of Antecedent Conditions and Performance. Academy of Management Journal 50(5), 1217–1234 (2007)CrossRefGoogle Scholar
  9. 9.
    Zhang, Z., Waldman, D.A., Wang, Z.: A Multilevel Investigation of Leader-Member Exchange, Informal Leader Emergence, and Individual and Team Performance. Personnel Psychology 65(1), 49–78 (2012)CrossRefGoogle Scholar
  10. 10.
    Berka, C., et al.: Real-Time Analysis of EEG Indexes of Alertness, Cognition, and Memory Acquired With a Wireless EEG Headset. International Journal of Human-Computer Interaction 17(2), 151–170 (2004)CrossRefGoogle Scholar
  11. 11.
    Berka, C., et al.: EEG Correlates of Task Engagement and Mental Workload in Vigilance, Learning, and Memory Tasks. Aviation Space and Environmental Medicine 78(5), B231–B244 (2007)Google Scholar
  12. 12.
    Johnson, R.R., et al.: Drowsiness/Alertness Algorithm Development and Validation Using Synchronized EEG and Cognitive Performance to Individualize a Generalized Model. Biologizal Psychology 87(2), 241–250 (2011)CrossRefGoogle Scholar
  13. 13.
    Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93(5), 1043–1065 (1996)Google Scholar
  14. 14.
    Donchin, E., et al.: Cognition and event-related potentials. II. The orienting reflex and P300. Annals of the New York Academy of Sciences 425, 39–57 (1984)CrossRefGoogle Scholar
  15. 15.
    van Nunen, P.E., Declerck, A.C.: P300, alertness and cognition. Acta Psychiatrica Belgica 94(2), 96–97 (1994)Google Scholar
  16. 16.
    Polich, J., Kok, A.: Cognitive and biological determinants of P300: an integrative review. Biological Psychology 41(2), 103–146 (1995)CrossRefGoogle Scholar
  17. 17.
    Polich, J., et al.: P300 latency reflects the degree of cognitive decline in dementing illness. Electroencephalography and Clinical Neurophysiology 63(2), 138–144 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Robin R. Johnson
    • 1
  • Chris Berka
    • 1
  • David Waldman
    • 2
  • Pierre Balthazard
    • 3
  • Nicola Pless
    • 4
  • Thomas Maak
    • 4
  1. 1.Advanced Brain Monitoring, Inc.CarlsbadUSA
  2. 2.W.P. Carey School of BusinessArizona State UniversityUSA
  3. 3.School of BusinessSt. Bonaventure UniversityUSA
  4. 4.ESADE Business SchoolRamon Llull UniversitySpain

Personalised recommendations