Skip to main content

6 T Cell Responses in Fungal Infections

  • Chapter
  • First Online:
Human Fungal Pathogens

Part of the book series: The Mycota ((MYCOTA,volume 12))

  • 2182 Accesses

Abstract

Fungal diseases represent an important immunological paradigm because they can result from either defective immune recognition or overreacting inflammatory responses. The ever-growing number of patients suffering from life-threatening fungal diseases as a consequence of advances in medical care has created a pressing need to clarify both the molecular and cellular bases of fungal virulence as well as the mechanisms of host and fungal adaptation underlying immune homeostasis. Understanding the dynamics of the host–fungus interaction is central to the design of novel antifungal therapies and provides the foundation for successful vaccination strategies. This chapter reviews recent advances in the knowledge of adaptive immunity to fungi, positioning them within the conceptual framework of resistance-based versus tolerance-based antifungal responses, and how these mechanisms can be exploited for improved management of severe fungal infections and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, Sallusto F, Napolitani G (2007) Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8:639–646

    PubMed  CAS  Google Scholar 

  • Ahlgren KM, Moretti S, Lundgren BA, Karlsson I, Ahlin E, Norling A, Hallgren A, Perheentupa J, Gustafsson J, Rorsman F, Crewther PE, Ronnelid J, Bensing S, Scott HS, Kampe O, Romani L, Lobell A (2011) Increased IL-17A secretion in response to Candida albicans in autoimmune polyendocrine syndrome type 1 and its animal model. Eur J Immunol 41:235–245

    PubMed  CAS  Google Scholar 

  • Antachopoulos C, Walsh TJ, Roilides E (2007) Fungal infections in primary immunodeficiencies. Eur J Pediatr 166:1099–1117

    PubMed  Google Scholar 

  • Ashbee HR (2006) Recent developments in the immunology and biology of Malassezia species. FEMS Immunol Med Microbiol 47:14–23

    PubMed  CAS  Google Scholar 

  • Aujla SJ, Chan YR, Zheng M, Fei M, Askew DJ, Pociask DA, Reinhart TA, Mcallister F, Edeal J, Gaus K, Husain S, Kreindler JL, Dubin PJ, Pilewski JM, Myerburg MM, Mason CA, Iwakura Y, Kolls JK (2008) IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med 14:275–281

    PubMed  CAS  Google Scholar 

  • Bhatia S, Fei M, Yarlagadda M, Qi Z, Akira S, Saijo S, Iwakura Y, Van Rooijen N, Gibson GA, St Croix CM, Ray A, Ray P (2011) Rapid host defense against Aspergillus fumigatus involves alveolar macrophages with a predominance of alternatively activated phenotype. PLoS One 6:e15943

    PubMed  CAS  Google Scholar 

  • Bonifazi P, Zelante T, D’angelo C, De Luca A, Moretti S, Bozza S, Perruccio K, Iannitti RG, Giovannini G, Volpi C, Fallarino F, Puccetti P, Romani L (2009) Balancing inflammation and tolerance in vivo through dendritic cells by the commensal Candida albicans. Mucosal Immunol 2:362–374

    PubMed  CAS  Google Scholar 

  • Bonifazi P, D’angelo C, Zagarella S, Zelante T, Bozza S, De Luca A, Giovannini G, Moretti S, Iannitti RG, Fallarino F, Carvalho A, Cunha C, Bistoni F, Romani L (2010) Intranasally delivered siRNA targeting PI3K/Akt/mTOR inflammatory pathways protects from aspergillosis. Mucosal Immunol 3:193–205

    PubMed  CAS  Google Scholar 

  • Bozza S, Perruccio K, Montagnoli C, Gaziano R, Bellocchio S, Burchielli E, Nkwanyuo G, Pitzurra L, Velardi A, Romani L (2003) A dendritic cell vaccine against invasive aspergillosis in allogeneic hematopoietic transplantation. Blood 102:3807–3814

    PubMed  CAS  Google Scholar 

  • Bozza S, Montagnoli C, Gaziano R, Rossi G, Nkwanyuo G, Bellocchio S, Romani L (2004) Dendritic cell-based vaccination against opportunistic fungi. Vaccine 22:857–864

    PubMed  CAS  Google Scholar 

  • Bozza S, Clavaud C, Giovannini G, Fontaine T, Beauvais A, Sarfati J, D’angelo C, Perruccio K, Bonifazi P, Zagarella S, Moretti S, Bistoni F, Latge JP, Romani L (2009) Immune sensing of Aspergillus fumigatus proteins, glycolipids, and polysaccharides and the impact on Th immunity and vaccination. J Immunol 183(4):2407–2414

    PubMed  CAS  Google Scholar 

  • Bretz C, Gersuk G, Knoblaugh S, Chaudhary N, Randolph-Habecker J, Hackman RC, Staab J, Marr KA (2008) MyD88 signaling contributes to early pulmonary responses to Aspergillus fumigatus. Infect Immun 76:952–958

    PubMed  CAS  Google Scholar 

  • Carvalho A, De Luca A, Bozza S, Cunha C, D’angelo C, Moretti S, Perruccio K, Iannitti RG, Fallarino F, Pierini A, Latge JP, Velardi A, Aversa F, Romani L (2012) TLR3 essentially promotes protective class I-restricted memory CD8(+) T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood 119:967–977

    PubMed  CAS  Google Scholar 

  • Cassone A, Casadevall A (2012) Recent progress in vaccines against fungal diseases. Curr Opin Microbiol 15:427–433

    PubMed  CAS  Google Scholar 

  • Chai LY, Van De Veerdonk F, Marijnissen RJ, Cheng SC, Khoo AL, Hectors M, Lagrou K, Vonk AG, Maertens J, Joosten LA, Kullberg BJ, Netea MG (2010) Anti-Aspergillus human host defence relies on type 1 T helper (Th1), rather than type 17 T helper (Th17), cellular immunity. Immunology 130:46–54

    PubMed  CAS  Google Scholar 

  • Cheng SC, Van De Veerdonk F, Smeekens S, Joosten LA, Van Der Meer JW, Kullberg BJ, Netea MG (2010) Candida albicans dampens host defense by downregulating IL-17 production. J Immunol 185:2450–2457

    PubMed  CAS  Google Scholar 

  • Cobbold SP, Adams E, Nolan KF, Regateiro FS, Waldmann H (2010) Connecting the mechanisms of T-cell regulation: dendritic cells as the missing link. Immunol Rev 236:203–218

    PubMed  CAS  Google Scholar 

  • Codarri L, Gyulveszi G, Tosevski V, Hesske L, Fontana A, Magnenat L, Suter T, Becher B (2011) RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 12:560–567

    PubMed  CAS  Google Scholar 

  • Conti HR, Shen F, Nayyar N, Stocum E, Sun JN, Lindemann MJ, Ho AW, Hai JH, Yu JJ, Jung JW, Filler SG, Masso-Welch P, Edgerton M, Gaffen SL (2009) Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med 206:299–311

    PubMed  CAS  Google Scholar 

  • Cooney NM, Klein BS (2008) Fungal adaptation to the mammalian host: it is a new world, after all. Curr Opin Microbiol 11:511–516

    PubMed  CAS  Google Scholar 

  • Cunha C, Di Ianni M, Bozza S, Giovannini G, Zagarella S, Zelante T, D’angelo C, Pierini A, Pitzurra L, Falzetti F, Carotti A, Perruccio K, Latge JP, Rodrigues F, Velardi A, Aversa F, Romani L, Carvalho A (2010) Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood 116:5394–5402

    PubMed  CAS  Google Scholar 

  • Cutler JE, Deepe GS Jr, Klein BS (2007) Advances in combating fungal diseases: vaccines on the threshold. Nat Rev Microbiol 5:13–28

    PubMed  CAS  Google Scholar 

  • De Luca A, Montagnoli C, Zelante T, Bonifazi P, Bozza S, Moretti S, D’angelo C, Vacca C, Boon L, Bistoni F, Puccetti P, Fallarino F, Romani L (2007) Functional yet balanced reactivity to Candida albicans requires TRIF, MyD88, and IDO-dependent inhibition of Rorc. J Immunol 179:5999–6008

    PubMed  Google Scholar 

  • De Luca A, Bozza S, Zelante T, Zagarella S, D’angelo C, Perruccio K, Vacca C, Carvalho A, Cunha C, Aversa F, Romani L (2010a) Non-hematopoietic cells contribute to protective tolerance to Aspergillus fumigatus via a TRIF pathway converging on IDO. Cell Mol Immunol 7:459–470

    PubMed  Google Scholar 

  • De Luca A, Zelante T, D’angelo C, Zagarella S, Fallarino F, Spreca A, Iannitti RG, Bonifazi P, Renauld JC, Bistoni F, Puccetti P, Romani L (2010b) IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol 3:361–373

    PubMed  Google Scholar 

  • De Luca A, Iannitti RG, Bozza S, Beau R, Casagrande A, D’angelo C, Moretti S, Cunha C, Giovannini G, Massi-Benedetti C, Carvalho A, Boon L, Latge JP, Romani L (2012) CD4(+) T cell vaccination overcomes defective cross-presentation of fungal antigens in a mouse model of chronic granulomatous disease. J Clin Invest 122:1816–1831

    PubMed  Google Scholar 

  • Desvignes L, Ernst JD (2009) Interferon-gamma-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis. Immunity 31:974–985

    PubMed  CAS  Google Scholar 

  • El-Behi M, Ciric B, Dai H, Yan Y, Cullimore M, Safavi F, Zhang GX, Dittel BN, Rostami A (2011) The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol 12:568–575

    PubMed  CAS  Google Scholar 

  • Eyerich K, Foerster S, Rombold S, Seidl HP, Behrendt H, Hofmann H, Ring J, Traidl-Hoffmann C (2008) Patients with chronic mucocutaneous candidiasis exhibit reduced production of Th17-associated cytokines IL-17 and IL-22. J Invest Dermatol 128:2640–2645

    PubMed  CAS  Google Scholar 

  • Eyerich K, Eyerich S, Hiller J, Behrendt H, Traidl-Hoffmann C (2010) Chronic mucocutaneous candidiasis, from bench to bedside. Eur J Dermatol 20:260–265

    PubMed  CAS  Google Scholar 

  • Ferreira MC, De Oliveira RT, Da Silva RM, Blotta MH, Mamoni RL (2010) Involvement of regulatory T cells in the immunosuppression characteristic of patients with paracoccidioidomycosis. Infect Immun 78:4392–4401

    PubMed  CAS  Google Scholar 

  • Ferwerda B, Ferwerda G, Plantinga TS, Willment JA, Van Spriel AB, Venselaar H, Elbers CC, Johnson MD, Cambi A, Huysamen C, Jacobs L, Jansen T, Verheijen K, Masthoff L, Morre SA, Vriend G, Williams DL, Perfect JR, Joosten LA, Wijmenga C, Van Der Meer JW, Adema GJ, Kullberg BJ, Brown GD, Netea MG (2009) Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med 361:1760–1767

    PubMed  CAS  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, Mccraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    PubMed  CAS  Google Scholar 

  • Fuchs BB, Mylonakis E (2006) Using non-mammalian hosts to study fungal virulence and host defense. Curr Opin Microbiol 9:346–351

    PubMed  CAS  Google Scholar 

  • Gessner MA, Werner JL, Lilly LM, Nelson MP, Metz AE, Dunaway CW, Chan YR, Ouyang W, Brown GD, Weaver CT, Steele C (2012) Dectin-1-dependent interleukin-22 contributes to early innate lung defense against Aspergillus fumigatus. Infect Immun 80:410–417

    PubMed  CAS  Google Scholar 

  • Glocker EO, Hennigs A, Nabavi M, Schaffer AA, Woellner C, Salzer U, Pfeifer D, Veelken H, Warnatz K, Tahami F, Jamal S, Manguiat A, Rezaei N, Amirzargar AA, Plebani A, Hannesschlager N, Gross O, Ruland J, Grimbacher B (2009) A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med 361:1727–1735

    PubMed  CAS  Google Scholar 

  • Grahl N, Puttikamonkul S, Macdonald JM, Gamcsik MP, Ngo LY, Hohl TM, Cramer RA (2011) In vivo hypoxia and a fungal alcohol dehydrogenase influence the pathogenesis of invasive pulmonary aspergillosis. PLoS Pathog 7:e1002145

    PubMed  CAS  Google Scholar 

  • Grohmann U, Volpi C, Fallarino F, Bozza S, Bianchi R, Vacca C, Orabona C, Belladonna ML, Ayroldi E, Nocentini G, Boon L, Bistoni F, Fioretti MC, Romani L, Riccardi C, Puccetti P (2007) Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nat Med 13:579–586

    PubMed  CAS  Google Scholar 

  • Gupta AO, Singh N (2011) Immune reconstitution syndrome and fungal infections. Curr Opin Infect Dis 24:527–533

    PubMed  CAS  Google Scholar 

  • Hardison SE, Brown GD (2012) C-type lectin receptors orchestrate antifungal immunity. Nat Immunol 13:817–822

    PubMed  CAS  Google Scholar 

  • Hardison SE, Wozniak KL, Kolls JK, Wormley FL Jr (2010) Interleukin-17 is not required for classical macrophage activation in a pulmonary mouse model of Cryptococcus neoformans infection. Infect Immun 78:5341–5351

    PubMed  CAS  Google Scholar 

  • Hernandez-Santos N, Gaffen SL (2012) Th17 cells in immunity to Candida albicans. Cell Host Microbe 11:425–435

    PubMed  CAS  Google Scholar 

  • Holland SM, Deleo FR, Elloumi HZ, Hsu AP, Uzel G, Brodsky N, Freeman AF, Demidowich A, Davis J, Turner ML, Anderson VL, Darnell DN, Welch PA, Kuhns DB, Frucht DM, Malech HL, Gallin JI, Kobayashi SD, Whitney AR, Voyich JM, Musser JM, Woellner C, Schaffer AA, Puck JM, Grimbacher B (2007) STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 357:1608–1619

    PubMed  CAS  Google Scholar 

  • Huang W, Na L, Fidel PL, Schwarzenberger P (2004) Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis 190:624–631

    PubMed  CAS  Google Scholar 

  • Iannitti RG, Carvalho A, Romani L (2012) From memory to antifungal vaccine design. Trends Immunol 33:467–474

    PubMed  CAS  Google Scholar 

  • Jain AV, Zhang Y, Fields WB, Mcnamara DA, Choe MY, Chen GH, Erb-Downward J, Osterholzer JJ, Toews GB, Huffnagle GB, Olszewski MA (2009) Th2 but not Th1 immune bias results in altered lung functions in a murine model of pulmonary Cryptococcus neoformans infection. Infect Immun 77:5389–5399

    PubMed  CAS  Google Scholar 

  • Kaufmann SH, Kuchroo VK (2009) Th17 cells. Microbes Infect 11:579–583

    PubMed  CAS  Google Scholar 

  • Kontoyiannis DP, Marr KA, Park BJ, Alexander BD, Anaissie EJ, Walsh TJ, Ito J, Andes DR, Baddley JW, Brown JM, Brumble LM, Freifeld AG, Hadley S, Herwaldt LA, Kauffman CA, Knapp K, Lyon GM, Morrison VA, Papanicolaou G, Patterson TF, Perl TM, Schuster MG, Walker R, Wannemuehler KA, Wingard JR, Chiller TM, Pappas PG (2010) Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001-2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clin Infect Dis 50:1091–1100

    PubMed  Google Scholar 

  • Kreindler JL, Steele C, Nguyen N, Chan YR, Pilewski JM, Alcorn JF, Vyas YM, Aujla SJ, Finelli P, Blanchard M, Zeigler SF, Logar A, Hartigan E, Kurs-Lasky M, Rockette H, Ray A, Kolls JK (2010) Vitamin D3 attenuates Th2 responses to Aspergillus fumigatus mounted by CD4+ T cells from cystic fibrosis patients with allergic bronchopulmonary aspergillosis. J Clin Invest 120:3242–3254

    PubMed  CAS  Google Scholar 

  • Levitz SM, Golenbock DT (2012) Beyond empiricism: informing vaccine development through innate immunity research. Cell 148:1284–1292

    PubMed  CAS  Google Scholar 

  • Lilic D (2002) New perspectives on the immunology of chronic mucocutaneous candidiasis. Curr Opin Infect Dis 15:143–147

    PubMed  Google Scholar 

  • Lilly LM, Gessner MA, Dunaway CW, Metz AE, Schwiebert L, Weaver CT, Brown GD, Steele C (2012) The beta-glucan receptor dectin-1 promotes lung immunopathology during fungal allergy via IL-22. J Immunol 189:3653–3660

    PubMed  CAS  Google Scholar 

  • Lin L, Ibrahim AS, Xu X, Farber JM, Avanesian V, Baquir B, Fu Y, French SW, Edwards JE Jr, Spellberg B (2009) Th1-Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoS Pathog 5:e1000703

    PubMed  Google Scholar 

  • Liu Y, Yang B, Zhou M, Li L, Zhou H, Zhang J, Chen H, Wu C (2009) Memory IL-22-producing CD4+ T cells specific for Candida albicans are present in humans. Eur J Immunol 39:1472–1479

    PubMed  CAS  Google Scholar 

  • Liu L, Okada S, Kong XF, Kreins AY, Cypowyj S, Abhyankar A, Toubiana J, Itan Y, Audry M, Nitschke P, Masson C, Toth B, Flatot J, Migaud M, Chrabieh M, Kochetkov T, Bolze A, Borghesi A, Toulon A, Hiller J, Eyerich S, Eyerich K, Gulacsy V, Chernyshova L, Chernyshov V, Bondarenko A, Grimaldo RM, Blancas-Galicia L, Beas IM, Roesler J, Magdorf K, Engelhard D, Thumerelle C, Burgel PR, Hoernes M, Drexel B, Seger R, Kusuma T, Jansson AF, Sawalle-Belohradsky J, Belohradsky B, Jouanguy E, Bustamante J, Bue M, Karin N, Wildbaum G, Bodemer C, Lortholary O, Fischer A, Blanche S, Al-Muhsen S, Reichenbach J, Kobayashi M, Rosales FE, Lozano CT, Kilic SS, Oleastro M, Etzioni A, Traidl-Hoffmann C, Renner ED, Abel L, Picard C, Marodi L, Boisson-Dupuis S, Puel A, Casanova JL (2011) Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med 208:1635–1648

    PubMed  CAS  Google Scholar 

  • Loures FV, Pina A, Felonato M, Calich VL (2009) TLR2 is a negative regulator of Th17 cells and tissue pathology in a pulmonary model of fungal infection. J Immunol 183:1279–1290

    PubMed  CAS  Google Scholar 

  • Luong M, Lam JS, Chen J, Levitz SM (2007) Effects of fungal N- and O-linked mannosylation on the immunogenicity of model vaccines. Vaccine 25:4340–4344

    PubMed  CAS  Google Scholar 

  • Magditch DA, Liu TB, Xue C, Idnurm A (2012) DNA mutations mediate microevolution between host-adapted forms of the pathogenic fungus Cryptococcus neoformans. PLoS Pathog 8:e1002936

    PubMed  Google Scholar 

  • Martinic MM, Von Herrath MG (2006) Control of graft-versus-host disease by regulatory T cells: which level of antigen specificity? Eur J Immunol 36:2299–2303

    PubMed  CAS  Google Scholar 

  • Mcfall-Ngai M (2007) Adaptive immunity: care for the community. Nature 445:153

    PubMed  CAS  Google Scholar 

  • Medzhitov R, Schneider DS, Soares MP (2012) Disease tolerance as a defense strategy. Science 335:936–941

    PubMed  CAS  Google Scholar 

  • Mellor AL, Munn DH (2008) Creating immune privilege: active local suppression that benefits friends, but protects foes. Nat Rev Immunol 8:74–80

    PubMed  CAS  Google Scholar 

  • Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ, Elias KM, Kanno Y, Spalding C, Elloumi HZ, Paulson ML, Davis J, Hsu A, Asher AI, O’shea J, Holland SM, Paul WE, Douek DC (2008) Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452:773–776

    PubMed  CAS  Google Scholar 

  • Montagnoli C, Fallarino F, Gaziano R, Bozza S, Bellocchio S, Zelante T, Kurup WP, Pitzurra L, Puccetti P, Romani L (2006) Immunity and tolerance to Aspergillus involve functionally distinct regulatory T cells and tryptophan catabolism. J Immunol 176:1712–1723

    PubMed  CAS  Google Scholar 

  • Moraes-Vasconcelos D, Grumach AS, Yamaguti A, Andrade ME, Fieschi C, De Beaucoudrey L, Casanova JL, Duarte AJ (2005) Paracoccidioides brasiliensis disseminated disease in a patient with inherited deficiency in the beta1 subunit of the interleukin (IL)-12/IL-23 receptor. Clin Infect Dis 41:e31–e37

    PubMed  Google Scholar 

  • Mylonakis E, Casadevall A, Ausubel FM (2007) Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. PLoS Pathog 3:e101

    PubMed  Google Scholar 

  • Nanjappa SG, Heninger E, Wuthrich M, Gasper DJ, Klein BS (2012a) Tc17 cells mediate vaccine immunity against lethal fungal pneumonia in immune deficient hosts lacking CD4+ T cells. PLoS Pathog 8:e1002771

    PubMed  CAS  Google Scholar 

  • Nanjappa SG, Heninger E, Wuthrich M, Sullivan T, Klein B (2012b) Protective antifungal memory CD8(+) T cells are maintained in the absence of CD4(+) T cell help and cognate antigen in mice. J Clin Invest 122:987–999

    PubMed  CAS  Google Scholar 

  • Odds FC, Jacobsen MD (2008) Multilocus sequence typing of pathogenic Candida species. Eukaryot Cell 7:1075–1084

    PubMed  CAS  Google Scholar 

  • Orabona C, Grohmann U, Belladonna ML, Fallarino F, Vacca C, Bianchi R, Bozza S, Volpi C, Salomon BL, Fioretti MC, Romani L, Puccetti P (2004) CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nat Immunol 5:1134–1142

    PubMed  CAS  Google Scholar 

  • Pandiyan P, Conti HR, Zheng L, Peterson AC, Mathern DR, Hernandez-Santos N, Edgerton M, Gaffen SL, Lenardo MJ (2011) CD4(+)CD25(+)Foxp3(+) regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model. Immunity 34:422–434

    PubMed  CAS  Google Scholar 

  • Pappas PG, Alexander BD, Andes DR, Hadley S, Kauffman CA, Freifeld A, Anaissie EJ, Brumble LM, Herwaldt L, Ito J, Kontoyiannis DP, Lyon GM, Marr KA, Morrison VA, Park BJ, Patterson TF, Perl TM, Oster RA, Schuster MG, Walker R, Walsh TJ, Wannemuehler KA, Chiller TM (2010) Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin Infect Dis 50:1101–1111

    PubMed  Google Scholar 

  • Paveglio SA, Allard J, Foster Hodgkins SR, Ather JL, Bevelander M, Campbell JM, Whittaker Leclair LA, Mccarthy SM, Van Der Vliet A, Suratt BT, Boyson JE, Uematsu S, Akira S, Poynter ME (2011) Airway epithelial indoleamine 2,3-dioxygenase inhibits CD4+ T cells during Aspergillus fumigatus antigen exposure. Am J Respir Cell Mol Biol 44:11–23

    PubMed  CAS  Google Scholar 

  • Peleg AY, Tampakakis E, Fuchs BB, Eliopoulos GM, Moellering RC Jr, Mylonakis E (2008) Prokaryote-eukaryote interactions identified by using caenorhabditis elegans. Proc Natl Acad Sci USA 105:14585–14590

    PubMed  CAS  Google Scholar 

  • Perfect JR (2012) The impact of the host on fungal infections. Am J Med 125:S39–S51

    PubMed  CAS  Google Scholar 

  • Pinzan CF, Ruas LP, Casabona-Fortunato AS, Carvalho FC, Roque-Barreira MC (2010) Immunological basis for the gender differences in murine Paracoccidioides brasiliensis infection. PLoS One 5:e10757

    PubMed  Google Scholar 

  • Puccetti P, Grohmann U (2007) IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-kappaB activation. Nat Rev Immunol 7:817–823

    PubMed  CAS  Google Scholar 

  • Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L, Lim HK, Migaud M, Israel L, Chrabieh M, Audry M, Gumbleton M, Toulon A, Bodemer C, El-Baghdadi J, Whitters M, Paradis T, Brooks J, Collins M, Wolfman NM, Al-Muhsen S, Galicchio M, Abel L, Picard C, Casanova JL (2011) Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332:65–68

    PubMed  CAS  Google Scholar 

  • Pulendran B, Tang H, Denning TL (2008) Division of labor, plasticity, and crosstalk between dendritic cell subsets. Curr Opin Immunol 20:61–67

    PubMed  CAS  Google Scholar 

  • Ramirez-Ortiz ZG, Lee CK, Wang JP, Boon L, Specht CA, Levitz SM (2011) A nonredundant role for plasmacytoid dendritic cells in host defense against the human fungal pathogen Aspergillus fumigatus. Cell Host Microbe 9:415–424

    PubMed  CAS  Google Scholar 

  • Rapaka RR, Ricks DM, Alcorn JF, Chen K, Khader SA, Zheng M, Plevy S, Bengten E, Kolls JK (2010) Conserved natural IgM antibodies mediate innate and adaptive immunity against the opportunistic fungus Pneumocystis murina. J Exp Med 207:2907–2919

    PubMed  CAS  Google Scholar 

  • Rappleye CA, Goldman WE (2008) Fungal stealth technology. Trends Immunol 29:18–24

    PubMed  CAS  Google Scholar 

  • Richie DL, Hartl L, Aimanianda V, Winters MS, Fuller KK, Miley MD, White S, Mccarthy JW, Latge JP, Feldmesser M, Rhodes JC, Askew DS (2009) A role for the unfolded protein response (UPR) in virulence and antifungal susceptibility in Aspergillus fumigatus. PLoS Pathog 5:e1000258

    PubMed  Google Scholar 

  • Rivera A, Hohl TM, Collins N, Leiner I, Gallegos A, Saijo S, Coward JW, Iwakura Y, Pamer EG (2011) Dectin-1 diversifies Aspergillus fumigatus-specific T cell responses by inhibiting T helper type 1 CD4 T cell differentiation. J Exp Med 208:369–381

    PubMed  CAS  Google Scholar 

  • Rizzetto L, Cavalieri D (2010) A systems biology approach to the mutual interaction between yeast and the immune system. Immunobiology 215:762–769

    PubMed  CAS  Google Scholar 

  • Romani L (2011) Immunity to fungal infections. Nat Rev Immunol 11:275–288

    PubMed  CAS  Google Scholar 

  • Romani L, Puccetti P (2006) Protective tolerance to fungi: the role of IL-10 and tryptophan catabolism. Trends Microbiol 14:183–189

    PubMed  CAS  Google Scholar 

  • Romani L, Puccetti P (2007) Controlling pathogenic inflammation to fungi. Expert Rev Anti Infect Ther 5:1007–1017

    PubMed  CAS  Google Scholar 

  • Romani L, Puccetti P (2008) Immune regulation and tolerance to fungi in the lungs and skin. Chem Immunol Allergy 94:124–137

    PubMed  CAS  Google Scholar 

  • Romani L, Bistoni F, Puccetti P (2002) Fungi, dendritic cells and receptors: a host perspective of fungal virulence. Trends Microbiol 10:508–514

    PubMed  CAS  Google Scholar 

  • Romani L, Bistoni F, Perruccio K, Montagnoli C, Gaziano R, Bozza S, Bonifazi P, Bistoni G, Rasi G, Velardi A, Fallarino F, Garaci E, Puccetti P (2006) Thymosin alpha1 activates dendritic cell tryptophan catabolism and establishes a regulatory environment for balance of inflammation and tolerance. Blood 108:2265–2274

    PubMed  CAS  Google Scholar 

  • Romani L, Fallarino F, De Luca A, Montagnoli C, D’angelo C, Zelante T, Vacca C, Bistoni F, Fioretti MC, Grohmann U, Segal BH, Puccetti P (2008a) Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 451:211–215

    PubMed  CAS  Google Scholar 

  • Romani L, Zelante T, De Luca A, Fallarino F, Puccetti P (2008b) IL-17 and therapeutic kynurenines in pathogenic inflammation to fungi. J Immunol 180:5157–5162

    PubMed  CAS  Google Scholar 

  • Roy RM, Klein BS (2012) Dendritic cells in antifungal immunity and vaccine design. Cell Host Microbe 11:436–446

    PubMed  CAS  Google Scholar 

  • Ryan KR, Hong M, Arkwright PD, Gennery AR, Costigan C, Dominguez M, Denning D, Mcconnell V, Cant AJ, Abinun M, Spickett GP, Lilic D (2008) Impaired dendritic cell maturation and cytokine production in patients with chronic mucocutanous candidiasis with or without APECED. Clin Exp Immunol 154:406–414

    PubMed  CAS  Google Scholar 

  • Saijo S, Fujikado N, Furuta T, Chung SH, Kotaki H, Seki K, Sudo K, Akira S, Adachi Y, Ohno N, Kinjo T, Nakamura K, Kawakami K, Iwakura Y (2007) Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat Immunol 8:39–46

    PubMed  CAS  Google Scholar 

  • Sallusto F, Lanzavecchia A, Araki K, Ahmed R (2010) From vaccines to memory and back. Immunity 33:451–463

    PubMed  CAS  Google Scholar 

  • Saraiva M, O’garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10:170–181

    PubMed  CAS  Google Scholar 

  • Saveanu L, Carroll O, Weimershaus M, Guermonprez P, Firat E, Lindo V, Greer F, Davoust J, Kratzer R, Keller SR, Niedermann G, Van Endert P (2009) IRAP identifies an endosomal compartment required for MHC class I cross-presentation. Science 325:213–217

    PubMed  CAS  Google Scholar 

  • Savina A, Jancic C, Hugues S, Guermonprez P, Vargas P, Moura IC, Lennon-Dumenil AM, Seabra MC, Raposo G, Amigorena S (2006) NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell 126:205–218

    PubMed  CAS  Google Scholar 

  • Spellberg B, Ibrahim AS, Lin L, Avanesian V, Fu Y, Lipke P, Otoo H, Ho T, Edwards JE Jr (2008) Antibody titer threshold predicts anti-candidal vaccine efficacy even though the mechanism of protection is induction of cell-mediated immunity. J Infect Dis 197:967–971

    PubMed  CAS  Google Scholar 

  • Steinman RM (2008) Dendritic cells and vaccines. Proc (Bayl Univ Med Cent) 21(1):3–8. PMID 18209746

    Google Scholar 

  • Steinman RM (2012) Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 30:1–22

    PubMed  CAS  Google Scholar 

  • Stuehler C, Khanna N, Bozza S, Zelante T, Moretti S, Kruhm M, Lurati S, Conrad B, Worschech E, Stevanovic S, Krappmann S, Einsele H, Latge JP, Loeffler J, Romani L, Topp MS (2011) Cross-protective TH1 immunity against Aspergillus fumigatus and Candida albicans. Blood 117:5881–5891

    PubMed  CAS  Google Scholar 

  • Szymczak WA, Deepe GS Jr (2009) The CCL7-CCL2-CCR2 axis regulates IL-4 production in lungs and fungal immunity. J Immunol 183:1964–1974

    PubMed  CAS  Google Scholar 

  • Turnquist HR, Thomson AW (2008) Taming the lions: manipulating dendritic cells for use as negative cellular vaccines in organ transplantation. Curr Opin Organ Transplant 13:350–357

    PubMed  Google Scholar 

  • Van De Veerdonk FL, Plantinga TS, Hoischen A, Smeekens SP, Joosten LA, Gilissen C, Arts P, Rosentul DC, Carmichael AJ, Smits-Van Der Graaf CA, Kullberg BJ, Van Der Meer JW, Lilic D, Veltman JA, Netea MG (2011) STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med 365:54–61

    PubMed  Google Scholar 

  • Voelz K, Lammas DA, May RC (2009) Cytokine signaling regulates the outcome of intracellular macrophage parasitism by Cryptococcus neoformans. Infect Immun 77:3450–3457

    PubMed  CAS  Google Scholar 

  • Waldmann H, Cobbold S (2004) Exploiting tolerance processes in transplantation. Science 305:209–212

    PubMed  CAS  Google Scholar 

  • Wozniak KL, Levitz SM (2008) Cryptococcus neoformans enters the endolysosomal pathway of dendritic cells and is killed by lysosomal components. Infect Immun 76:4764–4771

    PubMed  CAS  Google Scholar 

  • Wuthrich M, Gern B, Hung CY, Ersland K, Rocco N, Pick-Jacobs J, Galles K, Filutowicz H, Warner T, Evans M, Cole G, Klein B (2011) Vaccine-induced protection against 3 systemic mycoses endemic to North America requires Th17 cells in mice. J Clin Invest 121:554–568

    PubMed  CAS  Google Scholar 

  • Wuthrich M, Deepe GS Jr, Klein B (2012) Adaptive immunity to fungi. Annu Rev Immunol 30:115–148

    PubMed  CAS  Google Scholar 

  • Zelante T, De Luca A, Bonifazi P, Montagnoli C, Bozza S, Moretti S, Belladonna ML, Vacca C, Conte C, Mosci P, Bistoni F, Puccetti P, Kastelein RA, Kopf M, Romani L (2007) IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol 37:2695–2706

    PubMed  CAS  Google Scholar 

  • Zelante T, Fallarino F, Bistoni F, Puccetti P, Romani L (2009) Indoleamine 2,3-dioxygenase in infection: the paradox of an evasive strategy that benefits the host. Microbes Infect 11:133–141

    PubMed  CAS  Google Scholar 

  • Zelante T, Iannitti RG, De Luca A, Arroyo J, Blanco N, Servillo G, Sanglard D, Reichard U, Palmer GE, Latge JP, Puccetti P, Romani L (2012) Sensing of mammalian IL-17A regulates fungal adaptation and virulence. Nat Commun 3:683

    PubMed  Google Scholar 

  • Zeller S, Glaser AG, Vilhelmsson M, Rhyner C, Crameri R (2008) Immunoglobulin-E-mediated reactivity to self antigens: a controversial issue. Int Arch Allergy Immunol 145:87–93

    PubMed  CAS  Google Scholar 

  • Zenewicz LA, Flavell RA (2008) IL-22 and inflammation: leukin’ through a glass onion. Eur J Immunol 38:3265–3268

    PubMed  CAS  Google Scholar 

  • Zhou L, Chong MM, Littman DR (2009) Plasticity of CD4+ T cell lineage differentiation. Immunity 30:646–655

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Cristina Massi-Benedetti for editorial assistance. The authors’ work was supported by the ERC Advanced Grant FUNMETA (ERC-2011-AdG-293714). Cristina Cunha was supported by the Fundação para a Ciência e Tecnologia, Portugal (contract SFRH/BD/65962/2009). We sincerely apologize to all those colleagues whose important work is not cited because of space considerations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostinho Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cunha, C., Aversa, F., Romani, L., Carvalho, A. (2014). 6 T Cell Responses in Fungal Infections. In: Kurzai, O. (eds) Human Fungal Pathogens. The Mycota, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39432-4_6

Download citation

Publish with us

Policies and ethics