Skip to main content

5 Macrophages in the Immune Response Against Cryptococcus

  • Chapter
  • First Online:
Human Fungal Pathogens

Part of the book series: The Mycota ((MYCOTA,volume 12))

Abstract

Cryptococcus neoformans is a pathogenic fungus that can cause fatal infections in a range of animals including humans. C. neoformans infection starts in the lungs, initially growing either extracellulary within the alveolar space or within phagocytic macrophages, but can disseminate to the central nervous system in the absence of an adequate immune response. Macrophages, which are the first component of the cell-mediated immune response encountered by C. neoformans, are vitally important for immune defence against Cryptococcus. Uptake and destruction of C. neoformans cells by macrophages is central to the immune system’s response to cryptococcal disease. However, the fungus possesses a number of virulence factors that allow it to escape destruction and exploit the inside of the macrophage as a niche for growth and replication. This chapter will primarily outline the various interactions of C. neoformans with the host macrophage during infection but will also attempt to place these interactions within the wider scope of the evolution of cryptococcal virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadi J, Pirofski L (1999) Antibodies reactive with the cryptococcal capsular polysaccharide glucuronoxylomannan are present in sera from children with and without human immunodeficiency virus infection. J Infect Dis 180:915–919

    Article  PubMed  CAS  Google Scholar 

  • Alvarez M, Casadevall A (2006) Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr Biol 16:2161–2165

    Article  PubMed  CAS  Google Scholar 

  • Bartlett KH, Kidd SE, Kronstad JW (2008) The emergence of Cryptococcus gattii in British Columbia and the Pacific Northwest. Curr Infect Dis Rep 10:58–65

    Article  PubMed  Google Scholar 

  • Bose I, Reese AJ, Ory JJ, Janbon G, Doering TL (2003) A yeast under cover: the capsule of Cryptococcus neoformans. Eukaryot Cell 2:655–663

    Article  PubMed  CAS  Google Scholar 

  • Brown GD, Gordon S (2001) Immune recognition. A new receptor for beta-glucans. Nature 413:36–37

    Article  PubMed  CAS  Google Scholar 

  • Brown GD, Gordon S (2003) Fungal beta-glucans and mammalian immunity. Immunity 19:311–315

    Article  PubMed  CAS  Google Scholar 

  • Buchanan KL, Murphy JW (1998) What makes Cryptococcus neoformans a pathogen? Emerg Infect Dis 4:71–83

    Article  PubMed  CAS  Google Scholar 

  • Byrnes EJ, Bildfell RJ, Frank SA, Mitchell TG, Marr KA, Heitman J (2009) Molecular evidence that the range of the Vancouver Island outbreak of Cryptococcus gattii infection has expanded into the Pacific Northwest in the United States. J Infect Dis 199:1081–1086

    Article  PubMed  Google Scholar 

  • Byrnes EJ III, Li W, Lewit Y, Ma H, Voelz K, Ren P, Carter DA, Chaturvedi V, Bildfell RJ, May RC, Heitman J (2010) Emergence and Pathogenicity of Highly Virulent Cryptococcus gattii Genotypes in the Northwest United States. PLoS Pathog 6:e1000850

    Article  PubMed  Google Scholar 

  • Casadevall A, Steenbergen JN, Nosanchuk JD (2003) ‘Ready made’ virulence and ‘dual use’ virulence factors in pathogenic environmental fungi–the Cryptococcus neoformans paradigm. Curr Opin Microbiol 6:332–337

    Article  PubMed  Google Scholar 

  • Chang YC, Kwon-Chung KJ (1994) Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol 14:4912–4919

    PubMed  CAS  Google Scholar 

  • Chang YC, Kwon-Chung KJ (1998) Isolation of the third capsule-associated gene, CAP60, required for virulence in Cryptococcus neoformans. Infect Immun 66:2230–2236

    PubMed  CAS  Google Scholar 

  • Chang YC, Kwon-Chung KJ (1999) Isolation, characterization, and localization of a capsule-associated gene, CAP10, of Cryptococcus neoformans. J Bacteriol 181:5636–5643

    PubMed  CAS  Google Scholar 

  • Chang YC, Penoyer LA, Kwon-Chung KJ (1996) The second capsule gene of Cryptococcus neoformans, CAP64, is essential for virulence. Infect Immun 64:1977–1983

    PubMed  CAS  Google Scholar 

  • Charlier C, Nielsen K, Daou S, Brigitte M, Chretien F, Dromer F (2009) Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect Immun 77:120–127

    Article  PubMed  CAS  Google Scholar 

  • Chayakulkeeree M, Johnston SA, Oei JB, Lev S, Williamson PR, Wilson CF, Zuo X, Leal AL, Vainstein MH, Meyer W, Sorrell TC, May RC, Djordjevic JT (2011) SEC14 is a specific requirement for secretion of phospholipase B1 and pathogenicity of Cryptococcus neoformans. Mol Microbiol 80:1088–1101

    Article  PubMed  CAS  Google Scholar 

  • Chen SC, Muller M, Zhou JZ, Wright LC, Sorrell TC (1997) Phospholipase activity in Cryptococcus neoformans: a new virulence factor? J Infect Dis 175:414–420

    Article  PubMed  CAS  Google Scholar 

  • Chrétien F, Lortholary O, Kansau I, Neuville S, Gray F, Dromer F (2002) Pathogenesis of cerebral Cryptococcus neoformans infection after fungemia. J Infect Dis 186:522–530

    Article  PubMed  Google Scholar 

  • Chun CD, Brown JC, Madhani HD (2011) A major role for capsule-independent phagocytosis-inhibitory mechanisms in mammalian infection by Cryptococcus neoformans. Cell Host Microbe 9:243–251

    Article  PubMed  CAS  Google Scholar 

  • Cox GM, Mcdade HC, Chen SC, Tucker SC, Gottfredsson M, Wright LC, Sorrell TC, Leidich SD, Casadevall A, Ghannoum MA, Perfect JR (2001) Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans. Mol Microbiol 39:166–175

    Article  PubMed  CAS  Google Scholar 

  • Cross CE, Bancroft GJ (1995) Ingestion of acapsular Cryptococcus neoformans occurs via mannose and beta-glucan receptors, resulting in cytokine production and increased phagocytosis of the encapsulated form. Infect Immun 63:2604–2611

    PubMed  CAS  Google Scholar 

  • Cruickshank JG, Cavill R, Jelbert M (1973) Cryptococcus neoformans of unusual morphology. Appl Microbiol 25:309–312

    PubMed  CAS  Google Scholar 

  • Deshaw M, Pirofski LA (1995) Antibodies to the Cryptococcus neoformans capsular glucuronoxylomannan are ubiquitous in serum from HIV+ and HIV− individuals. Clin Exp Immunol 99:425–432

    Article  PubMed  CAS  Google Scholar 

  • Feldmesser M, Kress Y, Casadevall A (2001) Dynamic changes in the morphology of Cryptococcus neoformans during murine pulmonary infection. Microbiology 147:2355–2365

    PubMed  CAS  Google Scholar 

  • Fromtling RA, Shadomy HJ, Jacobson ES (1982) Decreased virulence in stable, acapsular mutants of Cryptococcus neoformans. Mycopathologia 79:23–29

    Article  PubMed  CAS  Google Scholar 

  • Gantner BN, Simmons RM, Underhill DM (2005) Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J 24:1277–1286

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Hermoso D, Janbon G, Dromer F (1999) Epidemiological evidence for dormant Cryptococcus neoformans infection. J Clin Microbiol 37:3204–3209

    PubMed  CAS  Google Scholar 

  • Gates MA, Kozel TR (2006) Differential localization of complement component 3 within the capsular matrix of Cryptococcus neoformans. Infect Immun 74:3096–3106

    Article  PubMed  CAS  Google Scholar 

  • Giaimis J, Lombard Y, Fonteneau P, Muller CD, Levy R, Makaya-Kumba M, Lazdins J, Poindron P (1993) Both mannose and beta-glucan receptors are involved in phagocytosis of unopsonized, heat-killed Saccharomyces cerevisiae by murine macrophages. J Leukoc Biol 54:564–571

    PubMed  CAS  Google Scholar 

  • Giles SS, Dagenais TR, Botts MR, Keller NP, Hull CM (2009) Elucidating the pathogenesis of spores from the human fungal pathogen Cryptococcus neoformans. Infect Immun 77:3491–3500

    Article  PubMed  CAS  Google Scholar 

  • Granger DL, Perfect JR, Durack DT (1985) Virulence of Cryptococcus neoformans. Regulation of capsule synthesis by carbon dioxide. J Clin Invest 76:508–516

    Article  PubMed  CAS  Google Scholar 

  • Hamon M, Bierne H, Cossart P (2006) Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol 4:423–434

    Article  PubMed  CAS  Google Scholar 

  • Harizi H, Corcuff JB, Gualde N (2008) Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology. Trends Mol Med 14:461–469

    Article  PubMed  CAS  Google Scholar 

  • Hoag KA, Lipscomb MF, Izzo AA, Street NE (1997) IL-12 and IFN-gamma are required for initiating the protective Th1 response to pulmonary cryptococcosis in resistant C.B-17 mice. Am J Respir Cell Mol Biol 17:733–739

    Article  PubMed  CAS  Google Scholar 

  • Houpt DC, Pfrommer GS, Young BJ, Larson TA, Kozel TR (1994) Occurrences, immunoglobulin classes, and biological activities of antibodies in normal human serum that are reactive with Cryptococcus neoformans glucuronoxylomannan. Infect Immun 62:2857–2864

    PubMed  CAS  Google Scholar 

  • Hull CM, Heitman J (2002) Genetics of Cryptococcus neoformans. Annu Rev Genet 36:557–615

    Article  PubMed  CAS  Google Scholar 

  • Huynh KK, Grinstein S (2007) Regulation of vacuolar pH and its modulation by some microbial species. Microbiol Mol Biol Rev 71:452–462

    Article  PubMed  CAS  Google Scholar 

  • Idnurm A, Bahn YS, Nielsen K, Lin X, Fraser JA, Heitman J (2005) Deciphering the model pathogenic fungus Cryptococcus neoformans. Nat Rev Microbiol 3:753–764

    Article  PubMed  CAS  Google Scholar 

  • Ikeda R, Shinoda T, Fukazawa Y, Kaufman L (1982) Antigenic characterization of Cryptococcus neoformans serotypes and its application to serotyping of clinical isolates. J Clin Microbiol 16:22–29

    PubMed  CAS  Google Scholar 

  • Johnston SA, May RC (2010) The human fungal pathogen Cryptococcus neoformans escapes macrophages by a phagosome emptying mechanism that is inhibited by arp2/3 complex-mediated actin polymerisation. PLoS Pathog 6:e1001041

    Article  PubMed  Google Scholar 

  • Kozel TR, Gotschlich EC (1982) The capsule of cryptococcus neoformans passively inhibits phagocytosis of the yeast by macrophages. J Immunol 129:1675–1680

    PubMed  CAS  Google Scholar 

  • Kronstad JW, Attarian R, Cadieux B, Choi J, D’souza CA, Griffiths EJ, Geddes JM, Hu G, Jung WH, Kretschmer M, Saikia S, Wang J (2011) Expanding fungal pathogenesis: Cryptococcus breaks out of the opportunistic box. Nat Rev Microbiol 9:193–203

    Article  PubMed  CAS  Google Scholar 

  • Lengeler KB, Cox GM, Heitman J (2001) Serotype AD strains of Cryptococcus neoformans are diploid or aneuploid and are heterozygous at the mating-type locus. Infect Immun 69:115–122

    Article  PubMed  CAS  Google Scholar 

  • Levitz SM, Nong SH, Seetoo KF, Harrison TS, Speizer RA, Simons ER (1999) Cryptococcus neoformans resides in an acidic phagolysosome of human macrophages. Infect Immun 67:885–890

    PubMed  CAS  Google Scholar 

  • Liu OW, Chun CD, Chow ED, Chen C, Madhani HD, Noble SM (2008) Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell 135:174–188

    Article  PubMed  CAS  Google Scholar 

  • Love GL, Boyd GD, Greer DL (1985) Large Cryptococcus neoformans isolated from brain abscess. J Clin Microbiol 22:1068–1070

    PubMed  CAS  Google Scholar 

  • Luberto C, Martinez-Mariño B, Taraskiewicz D, Bolaños B, Chitano P, Toffaletti DL, Cox GM, Perfect JR, Hannun YA, Balish E, Del Poeta M (2003) Identification of App1 as a regulator of phagocytosis and virulence of Cryptococcus neoformans. J Clin Invest 112:1080–1094

    PubMed  CAS  Google Scholar 

  • Ma H, May RC (2009) Virulence in Cryptococcus species. Adv Appl Microbiol 67:131–190

    Google Scholar 

  • Ma H, Croudace JE, Lammas DA, May RC (2006) Expulsion of live pathogenic yeast by macrophages. Curr Biol 16:2156–2160

    Article  PubMed  CAS  Google Scholar 

  • Macdougall L, Kidd SE, Galanis E, Mak S, Leslie MJ, Cieslak PR, Kronstad JW, Morshed MG, Bartlett KH (2007) Spread of Cryptococcus gattii in British Columbia, Canada, and detection in the Pacific Northwest, USA. Emerg Infect Dis 13:42–50

    Article  PubMed  Google Scholar 

  • Mitchell TG, Perfect JR (1995) Cryptococcosis in the era of AIDS–100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev 8:515–548

    PubMed  CAS  Google Scholar 

  • Monari C, Bistoni F, Vecchiarelli A (2006) Glucuronoxylomannan exhibits potent immunosuppressive properties. FEMS Yeast Res 6:537–542

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Feldmesser M, Casadevall A (1996) J774 murine macrophage-like cell interactions with Cryptococcus neoformans in the presence and absence of opsonins. J Infect Dis 173:1222–1231

    Article  PubMed  CAS  Google Scholar 

  • Noverr MC, Phare SM, Toews GB, Coffey MJ, Huffnagle GB (2001) Pathogenic yeasts Cryptococcus neoformans and Candida albicans produce immunomodulatory prostaglandins. Infect Immun 69:2957–2963

    Article  PubMed  CAS  Google Scholar 

  • Noverr MC, Cox GM, Perfect JR, Huffnagle GB (2003) Role of PLB1 in pulmonary inflammation and cryptococcal eicosanoid production. Infect Immun 71:1538–1547

    Article  PubMed  CAS  Google Scholar 

  • Okagaki LH, Nielsen K (2012) Titan cells confer protection from phagocytosis in Cryptococcus neoformans infections. Eukaryot Cell 11:820–826

    Article  PubMed  CAS  Google Scholar 

  • Okagaki LH, Strain AK, Nielsen JN, Charlier C, Baltes NJ, Chrétien F, Heitman J, Dromer F, Nielsen K (2010) Cryptococcal cell morphology affects host cell interactions and pathogenicity. PLoS Pathog 6:e1000953

    Article  PubMed  Google Scholar 

  • Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM (2009) Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23:525–530

    Article  PubMed  Google Scholar 

  • Petzold EW, Himmelreich U, Mylonakis E, Rude T, Toffaletti D, Cox GM, Miller JL, Perfect JR (2006) Characterization and regulation of the trehalose synthesis pathway and its importance in the pathogenicity of Cryptococcus neoformans. Infect Immun 74:5877–5887

    Article  PubMed  CAS  Google Scholar 

  • Porcaro I, Vidal M, Jouvert S, Stahl PD, Giaimis J (2003) Mannose receptor contribution to Candida albicans phagocytosis by murine E-clone J774 macrophages. J Leukoc Biol 74:206–215

    Article  PubMed  CAS  Google Scholar 

  • Shea JM, Henry JL, Del Poeta M (2006) Lipid metabolism in Cryptococcus neoformans. FEMS Yeast Res 6:469–479

    Article  PubMed  CAS  Google Scholar 

  • Shi M, Li SS, Zheng C, Jones GJ, Kim KS, Zhou H, Kubes P, Mody CH (2010) Real-time imaging of trapping and urease-dependent transmigration of Cryptococcus neoformans in mouse brain. J Clin Invest 120:1683–1693

    Article  PubMed  CAS  Google Scholar 

  • Steenbergen JN, Casadevall A (2003) The origin and maintenance of virulence for the human pathogenic fungus Cryptococcus neoformans. Microbes Infect 5:667–675

    Article  PubMed  Google Scholar 

  • Steenbergen JN, Shuman HA, Casadevall A (2001) Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc Natl Acad Sci USA 98:15245–15250

    Article  PubMed  CAS  Google Scholar 

  • van der Pouw Kraan TC, Boeije LC, Smeenk RJ, Wijdenes J, Aarden LA (1995) Prostaglandin-E2 is a potent inhibitor of human interleukin 12 production. J Exp Med 181:775–779

    Article  PubMed  CAS  Google Scholar 

  • Vecchiarelli A, Retini C, Monari C, Tascini C, Bistoni F, Kozel TR (1996) Purified capsular polysaccharide of Cryptococcus neoformans induces interleukin-10 secretion by human monocytes. Infect Immun 64:2846–2849

    PubMed  CAS  Google Scholar 

  • Voelz K, Lammas DA, May RC (2009) Cytokine signaling regulates the outcome of intracellular macrophage parasitism by Cryptococcus neoformans. Infect Immun 77:3450–3457

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Aisen P, Casadevall A (1995) Cryptococcus neoformans melanin and virulence: mechanism of action. Infect Immun 63:3131–3136

    PubMed  CAS  Google Scholar 

  • Wormley FL, Perfect JR, Steele C, Cox GM (2007) Protection against cryptococcosis by using a murine gamma interferon-producing Cryptococcus neoformans strain. Infect Immun 75:1453–1462

    Article  PubMed  CAS  Google Scholar 

  • Zaragoza O, Taborda CP, Casadevall A (2003) The efficacy of complement-mediated phagocytosis of Cryptococcus neoformans is dependent on the location of C3 in the polysaccharide capsule and involves both direct and indirect C3-mediated interactions. Eur J Immunol 33:1957–1967

    Article  PubMed  CAS  Google Scholar 

  • Zaragoza O, Chrisman CJ, Castelli MV, Frases S, Cuenca-Estrella M, Rodríguez-Tudela JL, Casadevall A (2008) Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival. Cell Microbiol 10:2043–2057

    Article  PubMed  CAS  Google Scholar 

  • Zaragoza O, García-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodríguez-Tudela JL, Casadevall A (2010) Fungal cell gigantism during mammalian infection. PLoS Pathog 6:e1000945

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin C. May .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Evans, R.J., May, R.C. (2014). 5 Macrophages in the Immune Response Against Cryptococcus . In: Kurzai, O. (eds) Human Fungal Pathogens. The Mycota, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39432-4_5

Download citation

Publish with us

Policies and ethics