Skip to main content

1 From Commensal to Pathogen: Candida albicans

  • Chapter
  • First Online:
Book cover Human Fungal Pathogens

Part of the book series: The Mycota ((MYCOTA,volume 12))

Abstract

The attributes that allow Candida albicans to be a successful human commensal overlap with its ability to cause opportunistic disease. The ways in which C. albicans successfully transitions from a commensal to a pathogen involve many aspects of its growth and interaction with the host, including the host recognition of and response to the various cell types that characterise this fungal species. We discuss the factors that are important for commensal growth, stress responses, the role of the cell wall in immune recognition, attachment to and interactions with epithelial cells, and interactions with immune cells as key aspects of the commensal–pathogenic life style of this fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F (2007a) Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 8:942–949

    CAS  PubMed  Google Scholar 

  • Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, Sallusto F, Napolitani G (2007b) Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8:639–646

    CAS  PubMed  Google Scholar 

  • Almeida RS, Brunke S, Albrecht A, Thewes S, Laue M, Edwards JE, Filler SG, Hube B (2008) The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog 4:e1000217

    PubMed  Google Scholar 

  • Almeida RS, Wilson D, Hube B (2009) Candida albicans iron acquisition within the host. FEMS Yeast Res 9:1000–1012

    CAS  PubMed  Google Scholar 

  • Alonso-Monge R, Navarro-García F, Molero G, Diez-Orejas R, Gustin M, Pla J, Sánchez M, Nombela C (1999) Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol 181:3058–3068

    CAS  PubMed  Google Scholar 

  • Andaluz E, Ciudad T, Gómez-Raja J, Calderone R, Larriba G (2006) Rad52 depletion in Candida albicans triggers both the DNA-damage checkpoint and filamentation accompanied by but independent of expression of hypha-specific genes. Mol Microbiol 59:1452–1472

    CAS  PubMed  Google Scholar 

  • Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M, Yagita H, Ishii N, Evans R, Honda K, Takeda K (2008) ATP drives lamina propria T(H)17 cell differentiation. Nature 455:808–812

    CAS  PubMed  Google Scholar 

  • Baek Y-U, Li M, Davis DA (2008) Candida albicans ferric reductases are differentially regulated in response to distinct forms of iron limitation by the Rim101 and CBF transcription factors. Eukaryot Cell 7:1168–1179

    CAS  PubMed  Google Scholar 

  • Bain JM, Lewis LE, Okai B, Quinn J, Gow NAR, Erwig L-P (2012) Non-lytic expulsion/exocytosis of Candida albicans from macrophages. Fungal Genet Biol 49:677–678

    CAS  PubMed  Google Scholar 

  • Barelle CJ, Priest CL, Maccallum DM, Gow NAR, Odds FC, Brown AJP (2006) Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell Microbiol 8:961–971

    CAS  PubMed  Google Scholar 

  • Bi L, Gojestani S, Wu W, Hsu Y-MS, Zhu J, Ariizumi K, Lin X (2010) CARD9 mediates dectin-2-induced IkappaBalpha kinase ubiquitination leading to activation of NF-kappaB in response to stimulation by the hyphal form of Candida albicans. J Biol Chem 285:25969–25977

    CAS  PubMed  Google Scholar 

  • Brand A, Gow NAR (2009) Mechanisms of hypha orientation of fungi. Curr Opin Microbiol 12:350–357

    CAS  PubMed  Google Scholar 

  • Braun BR, Head WS, Wang MX, Johnson AD (2000) Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics 156:31–44

    CAS  PubMed  Google Scholar 

  • Brothers KM, Newman ZR, Wheeler RT (2011) Live imaging of disseminated candidiasis in zebrafish reveals role of phagocyte oxidase in limiting filamentous growth. Eukaryot Cell 10:932–944

    CAS  PubMed  Google Scholar 

  • Brown A, Haynes K, Gow N, Quinn J (2012) Stress responses in Candida. In: Calderone R, Clancy C (eds) Candida and candidiasis. ASM, Washington, DC, pp 225–242

    Google Scholar 

  • Casadevall A (2008) Evolution of intracellular pathogens. Annu Rev Microbiol 62:19–33

    CAS  PubMed  Google Scholar 

  • Casadevall A, Pirofski L (2003) The damage-response framework of microbial pathogenesis. Nat Rev Microbiol 1:17–24

    CAS  PubMed  Google Scholar 

  • Casadevall A, Pirofski L (2007) Accidental virulence, cryptic pathogenesis, martians, lost hosts, and the pathogenicity of environmental microbes. Eukaryot Cell 6:2169–2174

    CAS  PubMed  Google Scholar 

  • Cheng G, Wozniak K, Wallig MA, Fidel PL Jr, Trupin SR, Hoyer LL (2005) Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis. Infect Immun 73:1656–1663

    CAS  PubMed  Google Scholar 

  • Cheng S-C, Van de Veerdonk FL, Lenardon M, Stoffels M, Plantinga T, Smeekens S, Rizzetto L, Mukaremera L, Preechasuth K, Cavalieri D, Kanneganti TD, Van der Meer JWM, Kullberg BJ, Joosten LAB, Gow NAR, Netea MG (2011) The dectin-1/inflammasome pathway is responsible for the induction of protective T-helper 17 responses that discriminate between yeasts and hyphae of Candida albicans. J Leukoc Biol 90:357–366

    CAS  PubMed  Google Scholar 

  • Citiulo F, Jacobsen ID, Miramón P, Schild L, Brunke S, Zipfel P, Brock M, Hube B, Wilson D (2012) Candida albicans scavenges host zinc via Pra1 during endothelial invasion. PLoS Pathog 8:e1002777

    CAS  PubMed  Google Scholar 

  • Csank C, Schröppel K, Leberer E, Harcus D, Mohamed O, Meloche S, Thomas DY, Whiteway M (1998) Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun 66:2713–2721

    CAS  PubMed  Google Scholar 

  • D’ Ostiani CF, Del Sero G, Bacci A, Montagnoli C, Spreca A, Mencacci A, Ricciardi-Castagnoli P, Romani L (2000) Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J Exp Med 191:1661–1674

    Google Scholar 

  • Dalle F, Wächtler B, L’Ollivier C, Holland G, Bannert N, Wilson D, Labruère C, Bonnin A, Hube B (2010) Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol 12:248–271

    CAS  PubMed  Google Scholar 

  • Davis D, Wilson RB, Mitchell AP (2000) RIM101-dependent and -independent pathways govern pH responses in Candida albicans. Mol Cell Biol 20:971–978

    CAS  PubMed  Google Scholar 

  • Davis MM, Alvarez FJ, Ryman K, Holm ÅA, Ljungdahl PO, Engström Y (2011) Wild-type Drosophila melanogaster as a model host to analyze nitrogen source dependent virulence of Candida albicans. PLoS One 6:e27434

    CAS  PubMed  Google Scholar 

  • Diez-Orejas R, Molero G, Navarro-García F, Pla J, Nombela C, Sanchez-Pérez M (1997) Reduced virulence of Candida albicans MKC1 mutants: a role for mitogen-activated protein kinase in pathogenesis. Infect Immun 65:833–837

    CAS  PubMed  Google Scholar 

  • Ene IV, Adya AK, Wehmeier S, Brand AC, MacCallum DM, Gow NAR, Brown AJP (2012) Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cell Microbiol 14:1319–1335

    CAS  PubMed  Google Scholar 

  • Eyerich S, Wagener J, Wenzel V, Scarponi C, Pennino D, Albanesi C, Schaller M, Behrendt H, Ring J, Schmidt-Weber CB, Cavani A, Mempel M, Traidl-Hoffmann C, Eyerich K (2011) IL-22 and TNF-α represent a key cytokine combination for epidermal integrity during infection with Candida albicans. Eur J Immunol 41:1894–1901

    CAS  PubMed  Google Scholar 

  • Fradin C, De Groot P, MacCallum D, Schaller M, Klis F, Odds FC, Hube B (2005) Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol 56:397–415

    CAS  PubMed  Google Scholar 

  • Gantner BN, Simmons RM, Underhill DM (2005) Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J 24:1277–1286

    CAS  PubMed  Google Scholar 

  • Gow NAR, Brown AJP, Odds FC (2002) Fungal morphogenesis and host invasion. Curr Opin Microbiol 5:366–371

    CAS  PubMed  Google Scholar 

  • Gow NAR, Netea MG, Munro CA, Ferwerda G, Bates S, Mora-Montes HM, Walker L, Jansen T, Jacobs L, Tsoni V, Brown GD, Odds FC, Van der Meer JWM, Brown AJP, Kullberg BJ (2007) Immune recognition of Candida albicans beta-glucan by dectin-1. J Infect Dis 196:1565–1571

    CAS  PubMed  Google Scholar 

  • Gow NAR, Van de Veerdonk FL, Brown AJP, Netea MG (2011) Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol 10:112–122

    PubMed  Google Scholar 

  • Heymann P, Gerads M, Schaller M, Dromer F, Winkelmann G, Ernst JF (2002) The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion. Infect Immun 70:5246–5255

    CAS  PubMed  Google Scholar 

  • Hoebe K, Janssen E, Beutler B (2004) The interface between innate and adaptive immunity. Nat Immunol 5:971–974

    CAS  PubMed  Google Scholar 

  • Hoyer LL (2001) The ALS gene family of Candida albicans. Trends Microbiol 9:176–180

    CAS  PubMed  Google Scholar 

  • Hromatka BS, Noble SM, Johnson AD (2005) Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol Biol Cell 16:4814–4826

    CAS  PubMed  Google Scholar 

  • Hu C-J, Bai C, Zheng X-D, Wang Y-M, Wang Y (2002) Characterization and functional analysis of the siderophore-iron transporter CaArn1p in Candida albicans. J Biol Chem 277:30598–30605

    CAS  PubMed  Google Scholar 

  • Hube B (2004) From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Curr Opin Microbiol 7:336–341

    CAS  PubMed  Google Scholar 

  • Hube B (2009) Fungal adaptation to the host environment. Curr Opin Microbiol 12:347–349

    PubMed  Google Scholar 

  • Hwang C-S, Rhie G, Oh J-H, Huh W-K, Yim H-S, Kang S-O (2002) Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology 148:3705–3713 (Reading, Engl.)

    CAS  PubMed  Google Scholar 

  • Jacobsen ID, Wilson D, Wächtler B, Brunke S, Naglik JR, Hube B (2012) Candida albicans dimorphism as a therapeutic target. Expert Rev Anti Infect Ther 10:85–93

    PubMed  Google Scholar 

  • Joly S, Ma N, Sadler JJ, Soll DR, Cassel SL, Sutterwala FS (2009) Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J Immunol 183:3578–3581

    CAS  PubMed  Google Scholar 

  • Kaloriti D, Tillmann A, Cook E, Jacobsen M, You T, Lenardon M, Ames L, Barahona M, Chandrasekaran K, Coghill G, Goodman D, Gow NAR, Grebogi C, Ho H-L, Ingram P, McDonagh A, De Moura APS, Pang W, Puttnam M, Radmaneshfar E, Romano MC, Silk D, Stark J, Stumpf M, Thiel M, Thorne T, Usher J, Yin Z, Haynes K, Brown AJP (2012) Combinatorial stresses kill pathogenic Candida species. Med Mycol 50:699–709

    CAS  PubMed  Google Scholar 

  • Keppler-Ross S, Douglas L, Konopka JB, Dean N (2010) Recognition of yeast by murine macrophages requires mannan but not glucan. Eukaryot Cell 9:1776–1787

    CAS  PubMed  Google Scholar 

  • Knight SAB, Vilaire G, Lesuisse E, Dancis A (2005) Iron acquisition from transferrin by Candida albicans depends on the reductive pathway. Infect Immun 73:5482–5492

    CAS  PubMed  Google Scholar 

  • Kruppa M, Greene RR, Noss I, Lowman DW, Williams DL (2011) C. albicans increases cell wall mannoprotein, but not mannan, in response to blood, serum and cultivation at physiological temperature. Glycobiology 21:1173–1180

    CAS  PubMed  Google Scholar 

  • Leach MD, Budge S, Walker L, Munro C, Cowen LE, Brown AJP (2012) Hsp90 orchestrates transcriptional regulation by Hsf1 and cell wall remodelling by MAPK signalling during thermal adaptation in a pathogenic yeast. PLoS Pathog 8:e1003069

    CAS  PubMed  Google Scholar 

  • Lewis LE, Bain JM, Lowes C, Gillespie C, Rudkin FM, Gow NAR, Erwig L-P (2012) Stage specific assessment of Candida albicans phagocytosis by macrophages identifies cell wall composition and morphogenesis as key determinants. PLoS Pathog 8:e1002578

    CAS  PubMed  Google Scholar 

  • Liang Y, Gui L, Wei D-S, Zheng W, Xing L-J, Li M-C (2009) Candida albicans ferric reductase FRP1 is regulated by direct interaction with Rim101p transcription factor. FEMS Yeast Res 9:270–277

    CAS  PubMed  Google Scholar 

  • Lindquist S (1992) Heat-shock proteins and stress tolerance in microorganisms. Curr Opin Genet Dev 2:748–755

    CAS  PubMed  Google Scholar 

  • Liu Y, Filler SG (2011) Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell 10:168–173

    PubMed  Google Scholar 

  • Lo HJ, Köhler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949

    CAS  PubMed  Google Scholar 

  • Lorenz MC, Fink GR (2002) Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell 1:657–662

    CAS  PubMed  Google Scholar 

  • Luo G, Ibrahim AS, Spellberg B, Nobile CJ, Mitchell AP, Fu Y (2010) Candida albicans Hyr1p confers resistance to neutrophil killing and is a potential vaccine target. J Infect Dis 201:1718–1728

    CAS  PubMed  Google Scholar 

  • Martchenko M, Alarco A-M, Harcus D, Whiteway M (2004) Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol Biol Cell 15:456–467

    CAS  PubMed  Google Scholar 

  • Mayer FL, Wilson D, Jacobsen ID, Miramón P, Slesiona S, Bohovych IM, Brown AJP, Hube B (2012) Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans. PLoS One 7:e38584

    CAS  PubMed  Google Scholar 

  • Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4:119–128

    PubMed  Google Scholar 

  • McKenzie CGJ, Koser U, Lewis LE, Bain JM, Mora-Montes HM, Barker RN, Gow NAR, Erwig LP (2010) Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infect Immun 78:1650–1658

    CAS  PubMed  Google Scholar 

  • Miramón P, Dunker C, Windecker H, Bohovych IM, Brown AJP, Kurzai O, Hube B (2012) Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress. PLoS One 7:e52850

    PubMed  Google Scholar 

  • Mochon AB, Jin Y, Ye J, Kayala MA, Wingard JR, Clancy CJ, Nguyen MH, Felgner P, Baldi P, Liu H (2010) Serological profiling of a Candida albicans protein microarray reveals permanent host-pathogen interplay and stage-specific responses during candidemia. PLoS Pathog 6:e1000827

    PubMed  Google Scholar 

  • Monge RA, Román E, Nombela C, Pla J (2006) The MAP kinase signal transduction network in Candida albicans. Microbiology 152:905–912 (Reading, Engl.)

    CAS  PubMed  Google Scholar 

  • Moors MA, Stull TL, Blank KJ, Buckley HR, Mosser DM (1992) A role for complement receptor-like molecules in iron acquisition by Candida albicans. J Exp Med 175:1643–1651

    CAS  PubMed  Google Scholar 

  • Mora-Montes HM, Netea MG, Ferwerda G, Lenardon MD, Brown GD, Mistry AR, Kullberg BJ, O’Callaghan CA, Sheth CC, Odds FC, Brown AJP, Munro CA, Gow NAR (2011) Recognition and blocking of innate immunity cells by Candida albicans chitin. Infect Immun 79:1961–1970

    CAS  PubMed  Google Scholar 

  • Moyes DL, Runglall M, Murciano C, Shen C, Nayar D, Thavaraj S, Kohli A, Islam A, Mora-Montes H, Challacombe SJ, Naglik JR (2010) A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe 8:225–235

    CAS  PubMed  Google Scholar 

  • Munro CA, Selvaggini S, De Bruijn I, Walker L, Lenardon MD, Gerssen B, Milne S, Brown AJP, Gow NAR (2007) The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans. Mol Microbiol 63:1399–1413

    CAS  PubMed  Google Scholar 

  • Naglik JR, Rodgers CA, Shirlaw PJ, Dobbie JL, Fernandes-Naglik LL, Greenspan D, Agabian N, Challacombe SJ (2003) Differential expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in humans correlates with active oral and vaginal infections. J Infect Dis 188:469–479

    CAS  PubMed  Google Scholar 

  • Naglik JR, Fostira F, Ruprai J, Staab JF, Challacombe SJ, Sundstrom P (2006) Candida albicans HWP1 gene expression and host antibody responses in colonization and disease. J Med Microbiol 55:1323–1327

    CAS  PubMed  Google Scholar 

  • Naglik JR, Moyes DL, Wächtler B, Hube B (2011) Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect 13:963–976

    CAS  PubMed  Google Scholar 

  • Netea MG, Brown GD, Kullberg BJ, Gow NAR (2008) An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol 6:67–78

    CAS  PubMed  Google Scholar 

  • Nobile CJ, Solis N, Myers CL, Fay AJ, Deneault J-S, Nantel A, Mitchell AP, Filler SG (2008) Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cell Microbiol 10:2180–2196

    CAS  PubMed  Google Scholar 

  • Ouyang W, Kolls JK, Zheng Y (2008) The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28:454–467

    CAS  PubMed  Google Scholar 

  • Pendrak ML, Chao MP, Yan SS, Roberts DD (2004) Heme oxygenase in Candida albicans is regulated by hemoglobin and is necessary for metabolism of exogenous heme and hemoglobin to alpha-biliverdin. J Biol Chem 279:3426–3433

    CAS  PubMed  Google Scholar 

  • Phan QT, Fratti RA, Prasadarao NV, Edwards JE Jr, Filler SG (2005) N-cadherin mediates endocytosis of Candida albicans by endothelial cells. J Biol Chem 280:10455–10461

    CAS  PubMed  Google Scholar 

  • Piccini A, Carta S, Tassi S, Lasiglié D, Fossati G, Rubartelli A (2008) ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1beta and IL-18 secretion in an autocrine way. Proc Natl Acad Sci USA 105:8067–8072

    CAS  PubMed  Google Scholar 

  • Pierce JV, Kumamoto CA (2012) Variation in Candida albicans EFG1 expression enables host-dependent changes in colonizing fungal populations. MBio 3:e00117–00112

    CAS  PubMed  Google Scholar 

  • Pierce JV, Dignard D, Whiteway M, Kumamoto CA (2013) Normal adaptation of Candida albicans to the murine GI tract requires Efg1p-dependent regulation of metabolic and host defense genes. Eukaryot Cell 12(1):37–49

    CAS  PubMed  Google Scholar 

  • Piispanen AE, Hogan DA (2012) Candida spp. in microbial populations and communities: molecular interactions and biological importance. In: Calderone RA, Clancy CJ (eds) Candida and candidiasis. ASM, Washington, DC, pp 331–342

    Google Scholar 

  • Pukkila-Worley R, Peleg AY, Tampakakis E, Mylonakis E (2009) Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model. Eukaryot Cell 8:1750–1758

    CAS  PubMed  Google Scholar 

  • Ray TL, Payne CD (1988) Scanning electron microscopy of epidermal adherence and cavitation in murine candidiasis: a role for Candida acid proteinase. Infect Immun 56:1942–1949

    CAS  PubMed  Google Scholar 

  • Romani L (2011) Immunity to fungal infections. Nat Rev Immunol 11:275–288

    CAS  PubMed  Google Scholar 

  • Rosenbach A, Dignard D, Pierce JV, Whiteway M, Kumamoto CA (2010) Adaptations of Candida albicans for growth in the mammalian intestinal tract. Eukaryot Cell 9:1075–1086

    CAS  PubMed  Google Scholar 

  • Rubin-Bejerano I, Abeijon C, Magnelli P, Grisafi P, Fink GR (2007) Phagocytosis by human neutrophils is stimulated by a unique fungal cell wall component. Cell Host Microbe 2:55–67

    CAS  PubMed  Google Scholar 

  • Sandai D, Yin Z, Selway L, Stead D, Walker J, Leach MD, Bohovych I, Ene IV, Kastora S, Budge S, Munro CA, Odds FC, Gow NAR, Brown AJP (2012) The evolutionary rewiring of ubiquitination targets has reprogrammed the regulation of carbon assimilation in the pathogenic yeast Candida albicans. MBio 3:e00495–12

    CAS  PubMed  Google Scholar 

  • Santos R, Buisson N, Knight S, Dancis A, Camadro J-M, Lesuisse E (2003) Haemin uptake and use as an iron source by Candida albicans: role of CaHMX1-encoded haem oxygenase. Microbiology 149:579–588 (Reading, Engl.)

    CAS  PubMed  Google Scholar 

  • Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL (2003) Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2:1053–1060

    CAS  PubMed  Google Scholar 

  • Scherwitz C (1982) Ultrastructure of human cutaneous candidosis. J Invest Dermatol 78:200–205

    CAS  PubMed  Google Scholar 

  • Shapiro RS, Cowen LE (2010) Coupling temperature sensing and development. Virulence 1:45–48

    CAS  PubMed  Google Scholar 

  • Sheth CC, Hall R, Lewis L, Brown AJP, Odds FC, Erwig LP, Gow NAR (2011) Glycosylation status of the C. albicans cell wall affects the efficiency of neutrophil phagocytosis and killing but not cytokine signaling. Med Mycol 49:513–524

    CAS  PubMed  Google Scholar 

  • Shibata N, Suzuki A, Kobayashi H, Okawa Y (2007) Chemical structure of the cell-wall mannan of Candida albicans serotype A and its difference in yeast and hyphal forms. Biochem J 404:365–372

    CAS  PubMed  Google Scholar 

  • Singh A, Del Poeta M (2011) Lipid signalling in pathogenic fungi. Cell Microbiol 13:177–185

    CAS  PubMed  Google Scholar 

  • Sosinska GJ, De Groot PWJ, Teixeira de Mattos MJ, Dekker HL, De Koster CG, Hellingwerf KJ, Klis FM (2008) Hypoxic conditions and iron restriction affect the cell-wall proteome of Candida albicans grown under vagina-simulative conditions. Microbiology 154:510–520 (Reading, Engl.)

    CAS  PubMed  Google Scholar 

  • Staab JF, Bradway SD, Fidel PL, Sundstrom P (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:1535–1538

    CAS  PubMed  Google Scholar 

  • Sudbery PE (2011) Growth of Candida albicans hyphae. Nat Rev Microbiol 9:737–748

    CAS  PubMed  Google Scholar 

  • Sudbery P, Gow N, Berman J (2004) The distinct morphogenic states of Candida albicans. Trends Microbiol 12:317–324

    CAS  PubMed  Google Scholar 

  • Sun JN, Solis NV, Phan QT, Bajwa JS, Kashleva H, Thompson A, Liu Y, Dongari-Bagtzoglou A, Edgerton M, Filler SG (2010) Host cell invasion and virulence mediated by Candida albicans Ssa1. PLoS Pathog 6:e1001181

    PubMed  Google Scholar 

  • Sundstrom P, Balish E, Allen CM (2002a) Essential role of the Candida albicans transglutaminase substrate, hyphal wall protein 1, in lethal oroesophageal candidiasis in immunodeficient mice. J Infect Dis 185:521–530

    CAS  PubMed  Google Scholar 

  • Sundstrom P, Cutler JE, Staab JF (2002b) Reevaluation of the role of HWP1 in systemic candidiasis by use of Candida albicans strains with selectable marker URA3 targeted to the ENO1 locus. Infect Immun 70:3281–3283

    CAS  PubMed  Google Scholar 

  • Suzuki S (2002) Serological differences among the pathogenic Candida spp. In: Calderone RA, Clancy C (eds) Candida and candidiasis. ASM, Washington, DC, pp 29–36

    Google Scholar 

  • Thewes S, Kretschmar M, Park H, Schaller M, Filler SG, Hube B (2007) In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion. Mol Microbiol 63:1606–1628

    CAS  PubMed  Google Scholar 

  • Thompson DS, Carlisle PL, Kadosh D (2011) Coevolution of morphology and virulence in Candida species. Eukaryot Cell 10:1173–1182

    CAS  PubMed  Google Scholar 

  • Tillmann A, Gow NAR, Brown AJP (2011) Nitric oxide and nitrosative stress tolerance in yeast. Biochem Soc Trans 39:219–223

    CAS  PubMed  Google Scholar 

  • Van de Veerdonk FL, Kullberg BJ, Van der Meer JWM, Gow NAR, Netea MG (2008) Host-microbe interactions: innate pattern recognition of fungal pathogens. Curr Opin Microbiol 11:305–312

    PubMed  Google Scholar 

  • Van de Veerdonk FL, Joosten LAB, Devesa I, Mora-Montes HM, Kanneganti T-D, Dinarello CA, Van der Meer JWM, Gow NAR, Kullberg BJ, Netea MG (2009) Bypassing pathogen-induced inflammasome activation for the regulation of interleukin-1beta production by the fungal pathogen Candida albicans. J Infect Dis 199:1087–1096

    PubMed  Google Scholar 

  • Van de Veerdonk FL, Marijnissen RJ, Marijnissen R, Joosten LAB, Kullberg BJ, Drenth JPH, Netea MG, Van der Meer JWM (2010) Milder clinical hyperimmunoglobulin E syndrome phenotype is associated with partial interleukin-17 deficiency. Clin Exp Immunol 159:57–64

    PubMed  Google Scholar 

  • Van der Graaf CAA, Netea MG, Verschueren I, Van der Meer JWM, Kullberg BJ (2005) Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae. Infect Immun 73:7458–7464

    PubMed  Google Scholar 

  • Vylkova S, Carman AJ, Danhof HA, Collette JR, Zhou H, Lorenz MC (2011) The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH. MBio 2:e00055–00011

    PubMed  Google Scholar 

  • Wächtler B, Wilson D, Haedicke K, Dalle F, Hube B (2011a) From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS One 6:e17046

    PubMed  Google Scholar 

  • Wächtler B, Wilson D, Hube B (2011b) Candida albicans adhesion to and invasion and damage of vaginal epithelial cells: stage-specific inhibition by clotrimazole and bifonazole. Antimicrob Agents Chemother 55:4436–4439

    PubMed  Google Scholar 

  • Wächtler B, Citiulo F, Jablonowski N, Förster S, Dalle F, Schaller M, Wilson D, Hube B (2012) Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PLoS One 7:e36952

    PubMed  Google Scholar 

  • Weindl G, Naglik JR, Kaesler S, Biedermann T, Hube B, Korting HC, Schaller M (2007) Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. J Clin Invest 117:3664–3672

    CAS  PubMed  Google Scholar 

  • Weindl G, Wagener J, Schaller M (2011) Interaction of the mucosal barrier with accessory immune cells during fungal infection. Int J Med Microbiol 301:431–435

    CAS  PubMed  Google Scholar 

  • Weissman Z, Kornitzer D (2004) A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol 53:1209–1220

    CAS  PubMed  Google Scholar 

  • Weissman Z, Shemer R, Conibear E, Kornitzer D (2008) An endocytic mechanism for haemoglobin-iron acquisition in Candida albicans. Mol Microbiol 69:201–217

    CAS  PubMed  Google Scholar 

  • Wheeler RT, Fink GR (2006) A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog 2:e35

    PubMed  Google Scholar 

  • White SJ, Rosenbach A, Lephart P, Nguyen D, Benjamin A, Tzipori S, Whiteway M, Mecsas J, Kumamoto CA (2007) Self-regulation of Candida albicans population size during GI colonization. PLoS Pathog 3:e184

    PubMed  Google Scholar 

  • Wysong DR, Christin L, Sugar AM, Robbins PW, Diamond RD (1998) Cloning and sequencing of a Candida albicans catalase gene and effects of disruption of this gene. Infect Immun 66:1953–1961

    CAS  PubMed  Google Scholar 

  • Yano J, Lilly E, Barousse M, Fidel PL Jr (2010) Epithelial cell-derived S100 calcium-binding proteins as key mediators in the hallmark acute neutrophil response during Candida vaginitis. Infect Immun 78:5126–5137

    CAS  PubMed  Google Scholar 

  • Zakikhany K, Naglik JR, Schmidt-Westhausen A, Holland G, Schaller M, Hube B (2007) In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell Microbiol 9:2938–2954

    CAS  PubMed  Google Scholar 

  • Zhu W, Filler SG (2010) Interactions of Candida albicans with epithelial cells. Cell Microbiol 12:273–282

    CAS  PubMed  Google Scholar 

  • Zordan R, Cormack B (2012) Adhesins on opportunistic fungal pathogens. In: Calderone R, Clancy C (eds) Candida and candidiasis. ASM, Washington, DC, pp 243–259

    Google Scholar 

  • Zupancic M, Cormack B (2007) Candida cell wall proteins at the host-pathogen interface. In: d’ Enfert C, Hube B (eds) Candida: comparative and functional genomics. Caister Academic, Norfolk

    Google Scholar 

Download references

Acknowledgements

NG and AW were supported by the Wellcome Trust (080088, 086827, 075470 & 097377) and the European Union ALLFUN (FP7/2007 2013, HEALTH-2010-260338). BH is supported by the Federal Ministry of Education and Research (BMBF: ERA Net PathoGenoMics CandiCol 0315901B), the Center for Sepsis Control and Care (CSCC – BMBF 01EO1002), the Deutsche Forschungsgemeinschaft (DFG Hu 528/15, 16 and 17), the Jena School for Microbial Communication (JSMC), and the International Leibniz Research School for Microbial and Biomolecular Interactions (ILRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil A. R. Gow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Whittington, A., Gow, N.A.R., Hube, B. (2014). 1 From Commensal to Pathogen: Candida albicans . In: Kurzai, O. (eds) Human Fungal Pathogens. The Mycota, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39432-4_1

Download citation

Publish with us

Policies and ethics