Skip to main content

Translation in Chloroplasts of Flowering Plants

  • Chapter
  • First Online:
Translation in Mitochondria and Other Organelles
  • 1078 Accesses

Abstract

The chloroplast genome in flowering plants contains about 80 protein-coding genes. The chloroplast translational machinery, which is similar to that of Escherichia coli, reads the corresponding mRNAs. Translation initiation is critical to produce a correct protein. There are multiple possible initiation codons, either AUG or GUG, around an initiation region. Generally, cis-elements residing in a 5′-untranslated region and trans-acting factors are responsible for selection of genuine initiation codons. Unlike eubacterial mRNAs, a limited number of chloroplast mRNAs use Shine-Dalgarno-like sequences as their cis-elements, and many chloroplast mRNAs require specific trans-acting factors. As the chloroplast genome is compact, some genes (cistrons) partially overlap; namely, the start codon of a downstream cistron is located in front of the stop codon of its upstream cistron. In such a case, the downstream cistron is translated in a special manner called “translational coupling” and by an additional mechanism to produce the necessary amount of its product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi Y, Kuroda H, Yukawa Y et al (2012) Translation of partially overlapping psbD-psbC mRNAs in chloroplasts: the role of 5′-processing and translational coupling. Nucl Acids Res 40:3152–3158

    Article  PubMed  CAS  Google Scholar 

  • Alexander C, Faber N, Klaff P (1998) Characterization of protein-binding to the spinach chloroplast psbA mRNA 5′untranslated region. Nucl Acids Res 26:2265–2272

    Article  PubMed  CAS  Google Scholar 

  • Alkatib S, Scharff LB, Rogalski M (2012) The contributions of wobbling and superwobbling to the reading of the genetic code. PLoS Genet 8:e1003076

    Article  PubMed  CAS  Google Scholar 

  • Baecker JJ, Sneddon JC, Hollingsworth MJ (2009) Efficient translation in chloroplasts requires element(s) upstream of the putative ribosome binding site from atpI. Am J Bot 96:627–636

    Article  PubMed  CAS  Google Scholar 

  • Barkan A, Walker M, Nolasco M et al (1994) A nuclear mutation in maize blocks the processing and translation of several chloroplast mRNAs and provides evidence for the differential translation of alternative mRNA forms. EMBO J 13:3170–3181

    PubMed  CAS  Google Scholar 

  • Barneche F, Winter V, Crèvecoeur M et al (2006) ATAB 2 is a novel factor in the signalling pathway of light-controlled synthesis of photosystem proteins. EMBO J 25:5907–5918

    Article  PubMed  CAS  Google Scholar 

  • Barrell BG, Anderson S, Bankier AT et al (1980) Different pattern of codon recognition by mammalian mitochondrial tRNAs. Proc Natl Acad Sci USA 77:3164–3166

    Article  PubMed  CAS  Google Scholar 

  • Bock R (2007) Structure, function, and inheritance of plastid genomes. In: Bock R (ed) Cell and molecular biology of plastids. Springer, Potsdam-Golm, pp p29–p63

    Chapter  Google Scholar 

  • Chen H, Bjerknes M, Kumar R et al (1994) Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. Nucl Acids Res 22:4953–4957

    Article  PubMed  CAS  Google Scholar 

  • Choquet Y, Wollman F-A (2002) Translational regulations as specific traits of chloroplast gene expression. FEBS Lett 529:39–42

    Article  PubMed  CAS  Google Scholar 

  • Cohen BN, Coleman TA, Schmitt JJ et al (1984) In vitro expression and characterization of the translation start site of the psbA gene product (QB protein) from higher plants. Nucl Acids Res 12:6221–6230

    Article  PubMed  CAS  Google Scholar 

  • Delannoy E, Le Ret M, Faivre-Nitschke E et al (2009) Arabidopsis tRNA adenosine deaminase arginine edits the wobble nucleotide of chloroplast tRNAArg(ACG) and is essential for efficient chloroplast translation. Plant Cell 21:2058–2071

    Article  PubMed  CAS  Google Scholar 

  • Eibl C, Zou Z, Beck A et al (1999) In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. Plant J 19:333–345

    Article  PubMed  CAS  Google Scholar 

  • Eyal Y, Goloubinoff P, Edelman M (1987) The amino terminal region delimited by Met1 and Met37 is an integral part of the 32 kDa herbicide binding protein. Plant Mol Biol 8:337–343

    Article  CAS  Google Scholar 

  • Giege P, Brennicke A (1999) RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFs. Proc Natl Acad Sci USA 96:15324–15329

    Article  PubMed  CAS  Google Scholar 

  • Hiratsuka J, Shimada H, Whhittier R et al (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217:185–194

    Article  PubMed  CAS  Google Scholar 

  • Hirose T, Sugiura M (1996) Cis-acting elements and trans-acting factors for accurate translation of chloroplast psbA mRNAs: development of an in vitro translation system from tobacco chloroplasts. EMBO J 15:1687–1695

    PubMed  CAS  Google Scholar 

  • Hirose T, Sugiura M (1997) Both RNA editing and RNA cleavage are required for translation of tobacco chloroplast ndhD mRNA: a possible regulatory mechanism for the expression of a chloroplast operon consisting of functionally unrelated genes. EMBO J 16:6804–6811

    Article  PubMed  CAS  Google Scholar 

  • Hirose T, Sugiura M (2004a) Functional Shine-Dalgarno-like sequences for translational initiation of chloroplast mRNAs. Plant Cell Physiol 45:114–117

    Article  PubMed  CAS  Google Scholar 

  • Hirose T, Sugiura M (2004b) Multiple elements required for translation of plastid atpB mRNA lacking the Shine-Dalgarno sequence. Nucl Acids Res 32:3503–3510

    Article  PubMed  CAS  Google Scholar 

  • Hirose T, Kusumegi T, Sugiura M (1998) Translation of tobacco chloroplast rps14 mRNA depends on a Shine-Dalgarno-like sequence in the 5′-untranslated region but not on internal RNA editing in the coding region. FEBS Lett 430:257–260

    Article  PubMed  CAS  Google Scholar 

  • Hirose T, Ideue T, Wakasugi T et al (1999) The chloroplast infA gene with a functional UUG initiation codon. FEBS 445:169–172

    Article  CAS  Google Scholar 

  • Hotto AM, Schmitz RJ, Fei Z et al (2011) Unexpected diversity of chloroplast noncoding RNAs as revealed by deep sequencing of the Arabidopsis transcriptome. G3(1):559–570

    Google Scholar 

  • Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34

    PubMed  CAS  Google Scholar 

  • Jackson RJ, Kaminski A, Pöyry TAA (2007) Coupled termination-reinitiation events in mRNA translation. In: Mathews MB, Sorenberg N, Herskey JWB (eds) Translational control in biology and medicine, Cold Spring Harbor Lab Press, Cold Spring Harbor, pp 197–223

    Google Scholar 

  • Kanaya S, Yamada Y, Kinouchi M et al (2001) Codon usage and tRNA genes in eukaryotes: correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis. J Mol Evol 53:290–298

    Article  PubMed  CAS  Google Scholar 

  • Kapoor S, Wakasugi T, Deno H et al (1994) An atpE-specific promoter within the coding region of the atpB gene in tobacco chloroplast DNA. Curr Genet 26:263–268

    Article  PubMed  CAS  Google Scholar 

  • Karcher D, Bock R (2009) Identification of the chloroplast adenosine-to-inosine tRNA editing enzyme. RNA 15:1251–1257

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi H, Fukuda I, Shiina T et al (1992) Dynamical behavior of psb gene transcripts in greening wheat seedlings. I. Time course of accumulation of the psbA through psbN gene transcripts during light-induced greening. Plant Mol Biol 20:695–704

    Article  PubMed  CAS  Google Scholar 

  • Klaff P, Gruissem W (1995) A 43 kD light-regulated chloroplast RNA-binding protein interacts with the psbA 5′ non-translated leader RNA. Photosynth Res 46:235–248

    Article  CAS  Google Scholar 

  • Krebbers ET, Larrinua IM, McIntosh L et al (1982) The maize chloroplast genes for theβ and ε subunits of the photosynthetic coupling factor CF1 are fused. Nucl Acids Res 10:4985–5002

    Article  PubMed  CAS  Google Scholar 

  • Kuroda H, Suzuki H, Kusumegi T et al (2007) Translation of psbC mRNAs starts from the downstream GUG, not the upstream AUG, and requires the extended Shine-Dalgarno sequence in tobacco chloroplasts. Plant Cell Physiol 48:1374–1378

    Article  PubMed  CAS  Google Scholar 

  • Lengyel P (1974) The process of translation: a bird’s-eye view. In: Nomura M, Tissières A, Lengyel P (eds) Ribosomes. Cold Spring Harbor Lab Press, Cold Spring Harbor, pp p13–p52

    Google Scholar 

  • Link S, Engelmann K, Meierhoff K et al (2012) The Atypical short-chain dehydrogenases HCF173 and HCF244 are jointly involved in translational initiation of the psbA mRNA of Arbidopsis. Plant Physiol 160:2202–2218

    Article  PubMed  CAS  Google Scholar 

  • Lung B, Zemann A, Madej MJ et al (2006) Identification of small non-coding RNAs from mitochondria and chloroplasts. Nucl Acids Res 34:3842–3852

    Article  PubMed  CAS  Google Scholar 

  • Lyska D, Meierhoff K, Westhoff P (2013) How to build functional thylakoid membranes: from plastid transcription to protein complex assembly. Planta 237:413–428

    Article  PubMed  CAS  Google Scholar 

  • Magee AM, Aspinall S, Rice DW et al (2010) Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Res 20:1700–1710

    Article  PubMed  CAS  Google Scholar 

  • Manuell A, Beligni MV, Yamaguchi K et al (2004) Regulation of chloroplast translation: interactions of RNA elements, RNA-binding proteins and the plastid ribosome. Biochem Soc Trans 32:601–605

    Article  PubMed  CAS  Google Scholar 

  • Manuell AL, Quispe J, Mayfield S (2007) Structure of the chloroplast ribosomes: Novel domains for translation regulation. PLoS Biol 5:e209

    Article  PubMed  Google Scholar 

  • Marder JB, Goloubinoff P, Edelman M (1984) Molecular architecture of the rapidly metabolized 32-kilodalton protein of photosystem II. J Biol Chem 259:3900–3908

    Google Scholar 

  • Marín-Navarro J, Manuell AL, Wu J et al (2007) Chloroplast translation regulation. Photosynth Res 94:359–374

    Article  PubMed  Google Scholar 

  • Matsubayashi T, Wakasugi T, Shinozaki K et al (1987) Six chloroplast genes (ndhA-F) homologous to human mitochondrial genes encoding components of the respiratory chain NADH dehydrogenase are actively expressed: determination of the splice sites in ndhA and ndhB pre-mRNAs. Mol Gen Genet 210:385–393

    Article  PubMed  CAS  Google Scholar 

  • McCormac DJ, Barkan A (1999) A nuclear gene in maize required for the translation of the chloroplast atpB/E mRNA. Plant Cell 11:1709–1716

    PubMed  CAS  Google Scholar 

  • Meierhoff K, Felder S, Nakamura T et al (2003) HCF152, an Arabidopsis RNA binding pentatricopeptide repeat protein involved in the processing of chloroplast psbB-psbT-psbH-petB-petD RNAs. Plant Cell 15:1480–1495

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Sugiura M (2007) Translation efficiencies of synonymous codons are not always correlated with codon usage in tobacco chloroplasts. Plant J 49:128–134

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M, Sugiura M (2009) Selection of synonymous codons for better expression of recombinant proteins in tobacco chloroplasts. Plant Biotech 26:53–56

    Article  CAS  Google Scholar 

  • Nakamura M, Sugiura M (2011) Translation efficiencies of synonymous codons for arginine differ dramatically and are not correlated with codon usage in chloroplasts. Gene 472:50–54

    Article  PubMed  CAS  Google Scholar 

  • Neckermann K, Zeltz P, Igloi GL et al (1994) The role of RNA editing in conservation of start codons in chloroplast genomes. Gene 146:177–182

    Article  PubMed  CAS  Google Scholar 

  • Ohto C, Torazawa K, Tanaka M et al (1988) Transcription of ten ribosomal protein genes from tobacco chloroplasts: a compilation of ribosomal protein genes found in the tobacco chloroplast genome. Plant Mol Biol 11:589–600

    Article  CAS  Google Scholar 

  • Peled-Zehavi H, Danon A (2007) Translation and translational regulation in chloroplasts. In: Bock R (ed) Cell and molecular biology of plastids. Springer, Potsdam-Golm, pp p249–p281

    Chapter  Google Scholar 

  • Pfalz J, Bayraktar OA, Prikryl J et al (2009) Site-specific binding of a PPR protein defines and stabilizes 5′ and 3′ mRNA termini in chloroplasts. EMBO J 28:2042–2052

    Article  Google Scholar 

  • Pillay DTN, Guillemaut G, Weil JH (1984) Nucleotide sequences of three soybean chloroplast tRNAsLeu and re-examination of bean chloroplast tRNA Leu2 sequence. Nucl Acids Res 12:2997–3001

    Article  PubMed  CAS  Google Scholar 

  • Plader W, Sugiura M (2003) The Shine-Dalgarno-like sequence is a negative regulatory element for translation of tobacco chloroplast rps2 mRNA: an additional mechanism for translational control in chloroplasts. Plant J 34:377–382

    Article  PubMed  CAS  Google Scholar 

  • Prikryl J, Rojas M, Schuster G et al (2011) Mechanism of RNA stabilization and translational activation by a pentatricopeptide repeat protein. Proc Natl Acad Sci USA 108:415–420

    Article  PubMed  CAS  Google Scholar 

  • Reinbothe S, Reinbothe C, Heintzen C et al (1993) A methyl jasmonate-induced shift in the length of the 5′ untranslated region impairs translation of the plastid rbcL transcript in barley. EMBO J 12:1505–1512

    PubMed  CAS  Google Scholar 

  • Robida MD, Merhige PM, Hollingsworth MJ (2002) Proteins are shared among RNA-protein complexes that form in the 5′untranslated regions of spinach chloroplast mRNAs. Curr Genet 41:53–62

    Article  PubMed  CAS  Google Scholar 

  • Robinson M, Lilley R, Little S et al (1984) Codon usage can affect efficiency of translation of genes in Escherichia coli. Nucl Acids Res 12:6663–6671

    Article  PubMed  CAS  Google Scholar 

  • Rochaix J-D (2001) Posttranscriptional control of chloroplast gene expression. From RNA to photosynthetic complex. Plant Physiol 125:142–144

    Article  PubMed  CAS  Google Scholar 

  • Samuelsson T, Elias P, Lustig F et al (1980) Aberrations of the classic codon reading scheme during protein synthesis in vitro. J Biol Chem 255:4583–4588

    PubMed  CAS  Google Scholar 

  • Sane AP, Stein B, Westhoff P (2005) The nuclear gene HCF107 encodes a membrane-associated R-TPR (RNA-tetratricopeptide repeat)-containing protein involved in expression of the plastidial psbH gene in Arabidopsis. Plant J 42:720–730

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Yukawa Y, Miyamoto T et al (2003) Identification of RNA editing sites in chloroplast transcripts from the maternal and paternal progenitors of tobacco (Nicotiana tabacum): Comparative analysis shows the involvement of distinct trans-factors for ndhB editing. Mol Biol Evol 20:1028–1035

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13:663–670

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Maier RM, Alcaraz J-P et al (2001) The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Plant Mol Biol 45:307–315

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Williams-Carrier R, Barkan A (2005) RNA immunoprecipitation and microarray analysis show a chloroplast pentatricopeptide repeat protein to be associated with the 5′ region of mRNAs whose translation it activates. Plant Cell 17:2791–2804

    Article  PubMed  CAS  Google Scholar 

  • Schult K, Meierhoff K, Paradies S et al (2007) The nuclear-encoded factor HCF173 is involved in the initiation of translation of the psbA mRNA in Arabidopsis thaliana. Plant Cell 19:1329–1346

    Article  PubMed  CAS  Google Scholar 

  • Sexton TB, Christopher DA, Mullet JE (1990) Light-induced switch in barley psbD-psbC promoter utilization: a novel mechanism regulating chloroplast gene expression. EMBO J 9:4485–4494

    PubMed  CAS  Google Scholar 

  • Sharma MR, Wilson DN, Datta PP et al (2007) Cryo-EM study of the spinach chloroplast ribosome reveals the structural and functional roles of plastid-specific ribosomal proteins. Proc Natl Acad Sci USA 104:19315–19320

    Article  PubMed  CAS  Google Scholar 

  • Sharma MR, Dönhöfer A, Barat C et al (2010) PSRP1 is not a ribosomal protein, but a ribosome-binding factor that is recycled by the ribosome-recycling factor (RRF) and elongation factor G (EF-G). J Biol Chem 285:4006–4014

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Deno H, Kato A et al (1983) Overlap and cotranscription of the genes for the beta and epsilon subunits of tobacco chloroplast ATPase. Gene 24:l47–l55

    Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M et al (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

    PubMed  CAS  Google Scholar 

  • Shteiman-Kotler A, Schuster G (2000) RNA-binding characteristics of the chloroplast S1-like ribosomal protein CS1. Nucl Acids Res 28:3310–3315

    Article  PubMed  CAS  Google Scholar 

  • Sørensen MA, Pedersen S (1991) Absolute in vivo translation rates of individual codons in Escherichia coli. The two glutamic acid codons GAA and GAG are translated with a threefold difference in rate. J Mol Biol 222:265–280

    Article  PubMed  Google Scholar 

  • Staub JM, Maliga P (1993) Accumulation of D1 polypeptide in tobacco plastids is regulated via the untranslated region of the psbA mRNA. EMBO J 12:601–606

    PubMed  CAS  Google Scholar 

  • Staub JM, Maliga P (1994) Translation of psbA mRNA is regulated by light via the 5′-untranslated region in tobacco plastids. Plant J 6:547–553

    Article  PubMed  CAS  Google Scholar 

  • Sugita M, Sugiura M (1984) Nucleotide sequence and transcription of the gene for the 32,000 dalton thylakoid membrane protein from Nicotiana tabacum. Mol Gen Genet l95:308–3l3

    Google Scholar 

  • Sugiura M (1987) Structure and function of the tobacco chloroplast genome. Bot Mag Tokyo 100:407–436

    Article  CAS  Google Scholar 

  • Sugiura M (1992) The chloroplast genome. Plant Mol Biol 19:149–168

    Article  PubMed  CAS  Google Scholar 

  • Sugiura M (2008) RNA editing in chloroplasts. In: Goringer HU (ed) RNA editing. Springer, Berlin, pp 123–142

    Chapter  Google Scholar 

  • Sugiura M, Hirose T, Sugita M (1998) Evolution and mechanism of translation in chloroplasts. Annu Rev Genet 32:437–459

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Kuroda H, Yukawa Y et al (2011) The downstream atpE cistron is efficiently translated via its own cis-element in partially overlapping atpB-atpE dicistronic mRNAs in chloroplasts. Nucl Acids Res 39:9405–9412

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Shiraishi T, Asada K (1988) COOH-terminal residues of D1 and the 44 kDa CPa-2 at spinach photosystem II core complex. FEBS Lett 240:6–8

    Article  PubMed  CAS  Google Scholar 

  • Vera A, Sugiura M (1994) A novel RNA gene in the tobacco plastid genome: its possible role in the maturation of 16S rRNA. EMBO J 13:2211–2217

    PubMed  CAS  Google Scholar 

  • Vera A, Matsubayashi T, Sugiura M (1992) Active transcription from a promoter positioned within the coding region of a divergently oriented gene: the tobacco chloroplast rpl32 gene. Mol Gen Genet 233:151–156

    Article  PubMed  CAS  Google Scholar 

  • Wakasugi T, Nagai T, Kapoor M et al (1997) Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: The existence of genes possibly involved in chloroplast division. Proc Natl Acad Sci USA 94:5967–5972

    Article  PubMed  CAS  Google Scholar 

  • Wakasugi T, Tsudzuki T, Sugiura M (2001) The genomics of land plant chloroplasts: Gene content and alteration of genomic information by RNA editing. Photosynth Res 70:107–118

    Article  PubMed  CAS  Google Scholar 

  • Wicke S, Schneeweiss GM, Claude W et al (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 76:273–297

    Article  PubMed  CAS  Google Scholar 

  • Wobbe L, Schwarz C, Nickelsen J et al (2008) Translational control of photosynthetic gene expression in phototrophic eukaryotes. Physiol Plant 133:507–515

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Morden CW, Ems SC et al (1992) Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: loss or accelerated sequence evolution of tRNA and ribosomal protein genes. J Mol Evol 35:304–317

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Subramanian AR (2000) The plastid ribosomal proteins: identification of all the proteins in the 50S subunit of an organelle ribosome (chloroplast). J Biol Chem 275:28466–28482

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Subramanian AR (2003) Proteomic identification of all plastid-specific ribosomal proteins in higher plant chloroplast 30S ribosomal subunit PSRP-2 (U1A-type domains), PSRP-3α/β (ycf65 homologue) and PSRP-4 (Thx homologue). Eur J Biochem 270:190–205

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, von Knoblauch K, Subramanian AR (2000) The plastid ribosomal proteins: identification of all the proteins in the 30S subunit of an organelle ribosome (chloroplast). J Biol Chem 275:28455–28465

    Article  PubMed  CAS  Google Scholar 

  • Yao WB, Meng BY, Tanaka M et al (1989) An additional promoter within the protein-coding region of the psbD-psbC gene cluster in tobacco chloroplast DNA. Nucl Acids Res 17:9583–9591

    Article  PubMed  CAS  Google Scholar 

  • Yukawa M, Sugiura M (2008) Termination codon-dependent translation of partially overlapping ndhC-ndhK transcripts in chloroplasts. Proc Natl Acad Sci USA 105:19549–19553

    Article  Google Scholar 

  • Yukawa M, Sugiura M (2013) Additional pathway to translate the downstream ndhK cistron in partially overlapping ndhC-ndhK mRNAs in chloroplasts. Proc Nucl Acid Sci USA 110:5701–5706

    Article  CAS  Google Scholar 

  • Yukawa M, Kuroda H, Sugiura M (2007) A new in vitro translation system for non-radioactive assay from tobacco chloroplasts: effect of pre-mRNA processing on translation in vitro. Plant J 49:367–376

    Article  PubMed  CAS  Google Scholar 

  • Zou Z, Eibl C, Koop HU (2003) The stem-loop region of the tobacco psbA 5′UTR is an important determinant of mRNA stability and translation efficiency. Mol Genet Genomics 269:340–349

    Article  PubMed  CAS  Google Scholar 

  • Zurawski G, Bottomley W, Whitfeld PR (1982) Structures of the genes for the β and ε subunits of spinach chloroplast ATPase indicate a dicistronic mRNA and an overlapping translation stop/start signal. Proc Natl Acad Sci USA 79:6260–6264

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Sugiura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sugiura, M. (2013). Translation in Chloroplasts of Flowering Plants. In: Duchêne, AM. (eds) Translation in Mitochondria and Other Organelles. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39426-3_9

Download citation

Publish with us

Policies and ethics