Skip to main content

The Chloroplasts as Platform for Recombinant Proteins Production

  • Chapter
  • First Online:

Abstract

Chloroplasts are a useful platform for the expression of recombinant proteins in higher plants. Transgenes can be introduced into the plastid genome (plastome) either by PEG transformation of plant protoplasts, or, more commonly, by the biolistic method, using leaves or suspension cells. Transgenes are integrated by double recombination events between flanking sequences in the vector and homologous sequences in the plastome. The genetic engineering of the plastome allows high-level foreign protein expression, site-specific gene integration, expression of multiple genes as operons, marker gene excision, and transgene containment. Since the first example of stable plastid transformation in higher plants, methods for DNA introduction, marker genes and selection strategies, vector types, and methods for marker excision have been improved. Although the plastids of some species remain difficult to transform, positive results have been shown for about 20 species. In this chapter, we summarize the basic structural and expression features of the plastid genome of higher plants, and discuss the development of a number of innovative enabling technologies for plastome transformation, the most recent and significant biotechnological applications, and the future perspectives of this technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

aadA :

aminoglycoside 3-adenylyltransferase

bar :

phosphinothricin acetyl transferase gene

ELISA:

Enzyme-linked immunosorbent assay

HPLC:

High-performance liquid chromatography

NEP:

Nucleus-encoded RNA polymerase

PEG:

Polyethylene glycol

PEP:

Plastid-encoded RNA polymerase

PPR:

Pentatricopeptide repeat

PTMs:

Post-translation modifications

RPOTmp:

Nucleus-encoded RNA polymerase localized in mitochondria and plastids

RPOTp:

Nucleus-encoded RNA polymerase localized in plastids

UTRs:

Untranslated regions

ROS:

Reactive oxygen species

TSP:

Total soluble protein

References

  • Adam Z, Frottin F, Espagne C, Meinnel T, Giglione C (2011) Interplay between N-terminal methionine excision and FtsH protease is essential for normal chloroplast development and function in Arabidopsis. Plant Cell 23:3745–3760

    PubMed  CAS  Google Scholar 

  • Agrawal P, Verma D, Daniell H (2011) Expression of Trichoderma reesei β-mannanase in tobacco chloroplasts and its utilization in lignocellulosic woody biomass hydrolysis. PLoS ONE 6:e29302

    PubMed  CAS  Google Scholar 

  • Ahmad N, Michoux F, McCarthy J, Nixon PJ (2012a) Expression of the affinity tags, glutathione-S-transferase and maltose-binding protein, in tobacco chloroplasts. Planta 235:863–871

    PubMed  CAS  Google Scholar 

  • Ahmad N, Michoux F, Nixon PJ (2012b) Investigating the production of foreign membrane proteins in tobacco chloroplasts: expression of an algal plastid terminal oxidase. PLoS ONE 7:e41722

    PubMed  CAS  Google Scholar 

  • Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibroek H, Nicholson L, Nguyen TT, Nugent G, Raemakers K, Romano A, Somers DA, Stoger E, Taylor N, Visser R (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breeding 15:305–327

    Google Scholar 

  • Apel W, Bock R (2009) Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin a conversion. Plant Physiol 151:59–66

    PubMed  CAS  Google Scholar 

  • Apel W, Schulze WX, Bock R (2010) Identification of protein stability determinants in chloroplasts. Plant J 63:636–650

    PubMed  CAS  Google Scholar 

  • Arai Y, Shikanai T, Doi Y, Yoshida S, Yamaguchi I, Nakashita H (2004) Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid. Plant Cell Physiol 45:1176–1184

    Google Scholar 

  • Arlen PA, Falconer R, Cherukumilli S, Cole A, Cole AM, Oishi KK, Daniell H (2007) Field production and functional evaluation of chloroplast-derived interferon-α2b. Plant Biotechnol J 5:511–525

    PubMed  CAS  Google Scholar 

  • Bally J, Paget E, Droux M, Job C, Job D, Dubald M (2008) Both the stroma and thylakoid lumen of tobacco chloroplasts are competent for the formation of disulphide bonds in recombinant proteins. Plant Biotechnol J 6:46–61

    PubMed  CAS  Google Scholar 

  • Barkan A (2011) Expression of plastid genes: organelle-specific elaborations on a prokaryotic scaffold. Plant Physiol 155:1520–1532

    PubMed  CAS  Google Scholar 

  • Barone P, Zhang XH, Widholm JM (2009) Tobacco plastid transformation using the feedback-insensitive anthranilate synthase [alpha]-subunit of tobacco (ASA2) as a new selectable marker. J Exp Bot 60:3195–3202

    PubMed  CAS  Google Scholar 

  • Bendich AJ (2004) Circular chloroplast chromosomes: the grand illusion. Plant Cell 16:1661–1666

    PubMed  CAS  Google Scholar 

  • Bienvenut WV, Espagne C, Martinez A, Majeran W, Valot B, Zivy M, Vallon O, Adam Z, Meinnel T, Giglione C (2011) Dynamics of post-translational modifications and protein stability in the stroma of Chlamydomonas reinhardtii chloroplasts. Proteomics 11:1734–1750

    PubMed  CAS  Google Scholar 

  • Birch-Machin I, Newell CA, Hibberd JM, Gray JC (2004) Accumulation of rotavirus VP6 protein in chloroplasts of transplastomic tobacco is limited by protein stability. Plant Biotechnol J 2:261–270

    PubMed  CAS  Google Scholar 

  • Blanco NE, Ceccoli RD, Segretin ME, Poli HO, Voss I, Melzer M, Bravo-Almonacid FF, Scheibe R, Hajirezaei MR, Carrillo N (2011) Cyanobacterial flavodoxin complements ferredoxin deficiency in knocked-down transgenic tobacco plants. Plant J 65:922–935

    PubMed  CAS  Google Scholar 

  • Bock R (2007) Structure, function, and inheritance of plastid genomes. In: Ralph B (ed) Cell and molecular biology of plastids. Topics in current genetics. Springer, Berlin, vol 19, pp 29–63

    Google Scholar 

  • Bohmert-Tatarev K, McAvoy S, Daughtry S, Peoples OP, Snell KD (2011) High levels of bioplastic are produced in fertile transplastomic tobacco plants engineered with a synthetic operon for the production of polyhydroxybutyrate. Plant Physiol 155:1690–1708

    Google Scholar 

  • Boyhan D, Daniell H (2011) Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide. Plant Biotechnol J 9:585–598

    PubMed  CAS  Google Scholar 

  • Cardi T, Giegé P, Kahlau S, Scotti N (2012) Expression profiling of organellar genes. In: Bock R, Knoop V (eds) Genomics of chloroplasts and mitochondria, advances in photosynthesis and respiration. Springer, vol 35, pp 323–355

    Google Scholar 

  • Cardi T, Lenzi P, Maliga P (2010) Chloroplasts as expression platforms for plant-produced vaccines. Expert Rev Vaccines 9:893–911

    PubMed  CAS  Google Scholar 

  • Caroca R, Howell KA, Hasse C, Ruf S, Bock R (2013) Design of chimeric expression elements that confer high-level gene activity in chromoplasts. Plant J 73:368–379

    PubMed  CAS  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2012) Genetic engineering of crop plants for fungal resistance: role of antifungal genes. Biotechnol Lett 34:995–1002

    PubMed  Google Scholar 

  • Ceccoli RD, Blanco NE, Segretin ME, Melzer M, Hanke GT, Scheibe R, Hajirezaei MR, Bravo-Almonacid FF, Carrillo N (2012) Flavodoxin displays dose-dependent effects on photosynthesis and stress tolerance when expressed in transgenic tobacco plants. Planta 236:1447–1458

    PubMed  CAS  Google Scholar 

  • Clarke J, Daniell H (2011) Plastid biotechnology for crop production: present status and future perspectives. Plant Mol Biol 76:211–220

    PubMed  CAS  Google Scholar 

  • Collinge DB, Jorgensen HJ, Lund OS, Lyngkjaer MF (2010) Engineering pathogen resistance in crop plants: current trends and future prospects. Annu Rev Phytopathol 48:269–291

    PubMed  CAS  Google Scholar 

  • Cominelli E, Tonelli C (2010) Transgenic crops coping with water scarcity. New Biotechnol 27:473–477

    CAS  Google Scholar 

  • Craig W, Gargano D, Scotti N, Nguyen TT, Lao NT, Kavanagh TA, Dix PJ, Cardi T (2005) Direct gene transfer in potato: a comparison of particle bombardment of leaf explants and PEG-mediated transformation of protoplasts. Plant Cell Rep 24:603–611

    PubMed  CAS  Google Scholar 

  • Craig W, Lenzi P, Scotti N, De Palma M, Saggese P, Carbone V, Curran NM, Magee AM, Medgyesy P, Kavanagh TA, Dix PJ, Grillo S, Cardi T (2008) Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance. Transgenic Res 17:769–782

    PubMed  CAS  Google Scholar 

  • Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16:345–348

    PubMed  CAS  Google Scholar 

  • Davarpanah S, Ahn J-W, Ko S, JUng S, Park Y-I, Liu J, Jeong W (2012) Stable expression of a fungal laccase protein using transplastomic tobacco. Plant Biotechnol Rep 6:305–312

    Google Scholar 

  • Davoodi-Semiromi A, Schreiber M, Nalapalli S, Verma D, Singh ND, Banks RK, Chakrabarti D, Daniell H (2010) Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol J 8:223–242

    PubMed  CAS  Google Scholar 

  • Day A, Goldschmidt-Clermont M (2011) The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol J 9:540–553

    PubMed  CAS  Google Scholar 

  • Day A, Madesis P (2007) DNA replication, recombination, and repair in plastids. In: Bock R (ed) Cell and molecular biology of plastids, vol 19., Topics in current geneticsSpringer, Berlin, pp 65–119

    Google Scholar 

  • De Cosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71–74

    PubMed  Google Scholar 

  • De Marchis F, Pompa A, Bellucci M (2012) Plastid proteostasis and heterologous protein accumulation in transplastomic plants. Plant Physiol 160:571–581

    PubMed  Google Scholar 

  • De Marchis F, Wang Y, Stevanato P, Arcioni S, Bellucci M (2009) Genetic transformation of the sugar beet plastome. Transgenic Res 18:17–30

    PubMed  CAS  Google Scholar 

  • Del L Yácono M, Farran I, Becher ML, Sander V, Sanchez VR, Martin V, Veramendi J, Clemente M (2012) A chloroplast-derived Toxoplasma gondii GRA4 antigen used as an oral vaccine protects against toxoplasmosis in mice. Plant Biotechnol J 10:1136–1144

    PubMed  Google Scholar 

  • Dix PJ, Kavanagh TA (1995) Transforming the plastome: genetic markers and DNA delivery systems. Euphytica 85:29–34

    CAS  Google Scholar 

  • Dufourmantel N, Tissot G, Goutorbe F, Garcon F, Muhr C, Jansens S, Pelissier B, Peltier G, Dubald M (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis Cry1Ab protoxin. Plant Mol Biol 58:659–668

    PubMed  CAS  Google Scholar 

  • Egelkrout E, Rajan V, Howard JA (2012) Overproduction of recombinant proteins in plants. Plant Sci 184:83–101

    PubMed  CAS  Google Scholar 

  • Elghabi Z, Karcher D, Zhou F, Ruf S, Bock R (2011) Optimization of the expression of the HIV fusion inhibitor cyanovirin-N from the tobacco plastid genome. Plant Biotechnol J 9:599–608

    PubMed  CAS  Google Scholar 

  • Farran I, McCarthy-Suarez I, Rio-Manterola F, Mansilla C, Lasarte JJ, Mingo-Castel AM (2010) The vaccine adjuvant extra domain a from fibronectin retains its proinflammatory properties when expressed in tobacco chloroplasts. Planta 231:977–990

    PubMed  CAS  Google Scholar 

  • Fernandez-San Millan A, Mingo-Castel A, Miller M, Daniell H (2003) A chloroplast transgenic approach to hyper-express and purify Human Serum Albumin, a protein highly susceptible to proteolytic degradation. Plant Biotechnol J 1:71–79

    PubMed  CAS  Google Scholar 

  • Gisby MF, Mellors P, Madesis P, Ellin M, Laverty H, O’Kane S, Ferguson MW, Day A (2011) A synthetic gene increases TGFβ3 accumulation by 75-fold in tobacco chloroplasts enabling rapid purification and folding into a biologically active molecule. Plant Biotechnol J 9:618–628

    PubMed  CAS  Google Scholar 

  • Gisby MF, Mudd EA, Day A (2012) Growth of transplastomic cells expressing d-amino acid oxidase in chloroplasts is tolerant to d-alanine and inhibited by d-valine. Plant Physiol 160:2219–2226

    PubMed  CAS  Google Scholar 

  • Glenz K, Bouchon B, Stehle T, Wallich R, Simon MM, Warzecha H (2006) Production of a recombinant bacterial lipoprotein in higher plant chloroplasts. Nat Biotechnol 24:76–77

    PubMed  CAS  Google Scholar 

  • Gorantala J, Grover S, Goel D, Rahi A, Jayadev Magani SK, Chandra S, Bhatnagar R (2011) A plant based protective antigen [PA(dIV)] vaccine expressed in chloroplasts demonstrates protective immunity in mice against anthrax. Vaccine 29:4521–4533

    PubMed  CAS  Google Scholar 

  • Gray BN, Yang H, Ahner BA, Hanson MR (2011) An efficient downstream box fusion allows high-level accumulation of active bacterial beta-glucosidase in tobacco chloroplasts. Plant Mol Biol 76:345–355

    PubMed  CAS  Google Scholar 

  • Hanson MR, Gray BN, Ahner BA (2013) Chloroplast transformation for engineering of photosynthesis. J Exp Bot 64:731–742

    PubMed  CAS  Google Scholar 

  • Hasunuma T, Kondo A, Miyake C (2009) Metabolic pathway engineering by plastid transformation is a powerful tool for production of compounds in higher plants. Plant Biotechnol 26:39–46

    CAS  Google Scholar 

  • Hasunuma T, Kondo A, Miyake C (2010) Metabolic engineering by plastid transformation as a strategy to modulate isoprenoid yield in plants. In: Fett-Neto AG (ed) Plant secondary metabolism engineering. Methods in molecular biology. Humana Press, vol 643, pp 213–227

    Google Scholar 

  • Hasunuma T, Miyazawa S, Yoshimura S, Shinzaki Y, Tomizawa K, Shindo K, Choi SK, Misawa N, Miyake C (2008) Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. Plant J 55:857–868

    PubMed  CAS  Google Scholar 

  • Herz S, Füssl M, Steiger S, Koop HU (2005) Development of novel types of plastid transformation vectors and evaluation of factors controlling expression. Transgenic Res 14:969–982

    PubMed  CAS  Google Scholar 

  • Husaini AM, Rashid Z, Mir R, Aquil B (2011) Approaches for gene targeting and targeted gene expression in plants. GM Crops 2:150–162

    PubMed  Google Scholar 

  • Husken A, Prescher S, Schiemann J (2010) Evaluating biological containment strategies for pollen-mediated gene flow. Environ Biosafety Res 9:67–73

    PubMed  Google Scholar 

  • Hussein HS, Ruiz ON, Terry N, Daniell H (2007) Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization. Environ Sci Technol 41:8439–8446

    PubMed  CAS  Google Scholar 

  • Inka Borchers AM, Gonzalez-Rabade N, Gray JC (2012) Increased accumulation and stability of rotavirus VP6 protein in tobacco chloroplasts following changes to the 5′ untranslated region and the 5′ end of the coding region. Plant Biotechnol J 10:422–434

    PubMed  Google Scholar 

  • Jansen R, Ruhlman T (2012) Plastid genomes of seed plants. In: Bock R, Knoop V (eds) Genomics of chloroplasts and mitochondria, Advances in photosynthesis and respiration. Springer, vol 35, pp 103–126

    Google Scholar 

  • Jansen RK, Saski C, Lee SB, Hansen AK, Daniell H (2011) Complete plastid genome sequences of three Rosids (Castanea, Prunus, Theobroma): evidence for at least two independent transfers of rpl22 to the nucleus. Mol Biol Evol 28:835–847

    PubMed  CAS  Google Scholar 

  • Jin S, Kanagaraj A, Verma D, Lange T, Daniell H (2011) Release of hormones from conjugates: chloroplast expression of beta-glucosidase results in elevated phytohormone levels associated with significant increase in biomass and protection from aphids or whiteflies conferred by sucrose esters. Plant Physiol 155:222–235

    PubMed  CAS  Google Scholar 

  • Jin S, Zhang X, Daniell H (2012) Pinellia ternata agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, Lepidopteran insects, bacterial and viral pathogens. Plant Biotechnol J 10:313–327

    PubMed  CAS  Google Scholar 

  • Jones JD (2011) Why genetically modified crops? Philos Transact A Math Phys Eng Sci 369:1807–1816

    Google Scholar 

  • Kahlau S, Bock R (2008) Plastid transcriptomics and translatomics of tomato fruit development and chloroplast-to-chromoplast differentiation: chromoplast gene expression largely serves the production of a single protein. Plant Cell 20:856–874

    PubMed  CAS  Google Scholar 

  • Kanagaraj AP, Verma D, Daniell H (2011) Expression of dengue-3 premembrane and envelope polyprotein in lettuce chloroplasts. Plant Mol Biol 76:323–333

    PubMed  CAS  Google Scholar 

  • Khan MS, Nurjis F (2012) Synthesis and expression of recombinant interferon alpha-5 gene in tobacco chloroplasts, a non-edible plant. Mol Biol Rep 39:4391–4400

    PubMed  CAS  Google Scholar 

  • Kim JY, Kavas M, Fouad WM, Nong G, Preston JF, Altpeter F (2011) Production of hyperthermostable GH10 xylanase Xyl10B from Thermotoga maritima in transplastomic plants enables complete hydrolysis of methylglucuronoxylan to fermentable sugars for biofuel production. Plant Mol Biol 76:357–369

    PubMed  CAS  Google Scholar 

  • Krech K, Ruf S, Masduki FF, Thiele W, Bednarczyk D, Albus CA, Tiller N, Hasse C, Schottler MA, Bock R (2012) The plastid genome-encoded Ycf4 protein functions as a nonessential assembly factor for photosystem I in higher plants. Plant Physiol 159:579–591

    PubMed  CAS  Google Scholar 

  • Krichevsky A, Meyers B, Vainstein A, Maliga P, Citovsky V (2010) Autoluminescent Plants. PLoS ONE 5:e15461

    PubMed  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854

    PubMed  CAS  Google Scholar 

  • Kumar S, Hahn FM, Baidoo E, Kahlon TS, Wood DF, McMahan CM, Cornish K, Keasling JD, Daniell H, Whalen MC (2012) Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts. Metab Eng 14:19–28

    PubMed  CAS  Google Scholar 

  • Kuroda H, Maliga P (2001) Complementarity of the 16S rRNA penultimate stem with sequences downstream of the AUG destabilizes the plastid mRNAs. Nucleic Acids Res 29:970–975

    PubMed  CAS  Google Scholar 

  • Kuroda H, Maliga P (2002) Overexpression of the clpP 5′-untranslated region in a chimeric context causes a mutant phenotype, suggesting competition for a clpP-specific RNA maturation factor in tobacco chloroplasts. Plant Physiol 129:1600–1606

    PubMed  CAS  Google Scholar 

  • Kwon KC, Nityanandam R, New JS, Daniell H (2013) Oral delivery of bioencapsulated exendin-4 expressed in chloroplasts lowers blood glucose level in mice and stimulates insulin secretion in beta-TC6 cells. Plant Biotechnol J 11:77–86

    PubMed  CAS  Google Scholar 

  • Le Martret B, Poage M, Shiel K, Nugent GD, Dix PJ (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J 9:661–673

    PubMed  Google Scholar 

  • Lee SB, Kim Y, Lee J, Oh K-J, Byun M-O, Jeong M-J, Bae S-C (2012) Stable expression of the sweet protein monellin variant MNEI in tobacco chloroplasts. Plant Biotechnol Rep 6:285–295

    Google Scholar 

  • Lee SB, Li B, Jin S, Daniell H (2011) Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections. Plant Biotechnol J 9:100–115

    PubMed  CAS  Google Scholar 

  • Lentz EM, Garaicoechea L, Alfano EF, Parreño V, Wigdorovitz A, Bravo-Almonacid FF (2012) Translational fusion and redirection to thylakoid lumen as strategies to improve the accumulation of a camelid antibody fragment in transplastomic tobacco. Planta 236:703–714

    PubMed  CAS  Google Scholar 

  • Lentz EM, Mozgovoj MV, Bellido D, dus santos mj, Wigdorovitz A, Bravo-Almonacid FF (2011) VP8* antigen produced in tobacco transplastomic plants confers protection against bovine rotavirus infection in a suckling mouse model. J Biotechnol 156:100–107

    PubMed  CAS  Google Scholar 

  • Lentz EM, Segretin ME, Morgenfeld MM, Wirth SA, Dus Santos MJ, Mozgovoj MV, Wigdorovitz A, Bravo-Almonacid FF (2010) High expression level of a foot and mouth disease virus epitope in tobacco transplastomic plants. Planta 231:387–395

    PubMed  CAS  Google Scholar 

  • Lenzi P, Scotti N, Alagna F, Tornesello M, Pompa A, Vitale A, De Stradis A, Monti L, Grillo S, Buonaguro F, Maliga P, Cardi T (2008) Translational fusion of chloroplast-expressed human papillomavirus type 16 L1 capsid protein enhances antigen accumulation in transplastomic tobacco. Transgenic Res 17:1091–1102

    PubMed  CAS  Google Scholar 

  • Lerbs-Mache S (2011) Function of plastid sigma factors in higher plants: regulation of gene expression or just preservation of constitutive transcription? Plant Mol Biol 76:235–249

    PubMed  CAS  Google Scholar 

  • Li W, Ruf S, Bock R (2011) Chloramphenicol acetyltransferase as selectable marker for plastid transformation. Plant Mol Biol 76:443–451

    PubMed  CAS  Google Scholar 

  • Liere K, Börner T (2007) Transcription and transcriptional regulation in plastids. In: Ralph B (ed) Cell and molecular biology of plastids, vol 19., Topics in current geneticsSpringer, Berlin, pp 121–174

    Google Scholar 

  • Liu CW, Lin CC, Yiu JC, Chen JJ, Tseng MJ (2008) Expression of a Bacillus thuringiensis toxin (cry1Ab) gene in cabbage (Brassica oleracea L. var. capitata L.) chloroplasts confers high insecticidal efficacy against Plutella xylostella. Theor Appl Genet 117:75–88

    PubMed  CAS  Google Scholar 

  • Lössl A, Bohmert K, Harloff H, Eibl C, Muhlbauer S, Koop HU (2005) Inducible trans-activation of plastid transgenes: expression of the R. eutropha phb operon in transplastomic tobacco. Plant Cell Physiol 46:1462–1471

    PubMed  Google Scholar 

  • Lössl A, Eibl C, Harloff HJ, Jung C, Koop HU (2003) Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Rep 21:891–899

    PubMed  Google Scholar 

  • Lössl AG, Waheed MT (2011) Chloroplast-derived vaccines against human diseases: achievements, challenges and scopes. Plant Biotechnol J 9:527–539

    PubMed  Google Scholar 

  • Lutz KA, Knapp JE, Maliga P (2001) Expression of bar in the plastid genome confers herbicide resistance. Plant Physiol 125:1585–1590

    PubMed  CAS  Google Scholar 

  • Madesis P, Osathanunkul M, Georgopoulou U, Gisby MF, Mudd EA, Nianiou I, Tsitoura P, Mavromara P, Tsaftaris A, Day A (2010) A hepatitis C virus core polypeptide expressed in chloroplasts detects anti-core antibodies in infected human sera. J Biotechnol 145:377–386

    PubMed  CAS  Google Scholar 

  • Madoka Y, Tomizawa K, Mizoi J, Nishida I, Nagano Y, Sasaki Y (2002) Chloroplast transformation with modified accD operon increases acetyl-CoA carboxylase and causes extension of leaf longevity and increase in seed yield in tobacco. Plant Cell Physiol 43:1518–1525

    PubMed  CAS  Google Scholar 

  • Magee AM, Aspinall S, Rice DW, Cusack BP, Sémon M, Perry AS, Stefanović S, Milbourne D, Barth S, Palmer JD, Gray JC, Kavanagh TA, Wolfe KH (2010) Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Res 20:1700–1710

    PubMed  CAS  Google Scholar 

  • Maier RM, Schmitz-Linneweber C (2004) Plastid genomes. In: Daniell H, Chase C (eds) Molecular biology and biotechnology of plant organelles. Springer, Dordrecht, pp 115–150

    Google Scholar 

  • Majeran W, Friso G, Asakura Y, Qu X, Huang M, Ponnala L, Watkins KP, Barkan A, van Wijk KJ (2012) Nucleoid-enriched proteomes in developing plastids and chloroplasts from maize leaves: a new conceptual framework for nucleoid functions. Plant Physiol 158:156–189

    PubMed  CAS  Google Scholar 

  • Maliga P (2002) Engineering the plastid genome of higher plants. Curr Opin Plant Biol 5:164–172

    PubMed  CAS  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    PubMed  CAS  Google Scholar 

  • Maliga P (2012) Plastid transformation in flowering plants. In: Bock R, Knoop V (eds) Genomics of Chloroplasts and Mitochondria. Advances in photosynthesis and respiration. Springer, vol 35, pp 393–414

    Google Scholar 

  • Maliga P, Bock R (2011) Plastid biotechnology: food, fuel, and medicine for the 21st century. Plant Physiol 155:1501–1510

    PubMed  CAS  Google Scholar 

  • Malik Ghulam M, Zghidi-Abouzid O, Lambert E, Lerbs-Mache S, Merendino L (2012) Transcriptional organization of the large and the small ATP synthase operons, atpI/H/F/A and atpB/E, in Arabidopsis thaliana chloroplasts. Plant Mol Biol 79:259–272

    PubMed  CAS  Google Scholar 

  • Manimaran P, Ramkumar G, Sakthivel K, Sundaram RM, Madhav MS, Balachandran SM (2011) Suitability of non-lethal marker and marker-free systems for development of transgenic crop plants: present status and future prospects. Biotechnol Adv 29:703–714

    PubMed  CAS  Google Scholar 

  • Manuell AL, Quispe J, Mayfield SP (2007) Structure of the chloroplast ribosome: novel domains for translation regulation. PLoS Biol 5:e209

    PubMed  Google Scholar 

  • Marchfelder A, Binder S (2004) Plastid and plant mitochondrial RNA processing and RNA stability. In: Daniell H, Chase C (eds) Molecular biology and biotechnology of plant organelles. Springer, Dordrecht, pp 261–294

    Google Scholar 

  • Marín-Navarro J, Manuell AL, Wu J, Mayfield PS (2007) Chloroplast translation regulation. Photosynth Res 94:359–374

    PubMed  Google Scholar 

  • McBride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P (1995) Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Biotechnology (N Y) 13:362–365

    CAS  Google Scholar 

  • Meyers B, Zaltsman A, Lacroix B, Kozlovsky SV, Krichevsky A (2010) Nuclear and plastid genetic engineering of plants: comparison of opportunities and challenges. Biotechnol Adv 28:747–756

    PubMed  CAS  Google Scholar 

  • Michoux F, Ahmad N, Hennig A, Nixon PJ, Warzecha H (2013) Production of leafy biomass using temporary immersion bioreactors: an alternative platform to express proteins in transplastomic plants with drastic phenotypes. Planta 237:903–908

    PubMed  CAS  Google Scholar 

  • Michoux F, Ahmad N, McCarthy J, Nixon PJ (2011) Contained and high-level production of recombinant protein in plant chloroplasts using a temporary immersion bioreactor. Plant Biotechnol J 9:575–584

    PubMed  CAS  Google Scholar 

  • Nakashita H, Arai Y, Shikanai T, Doi Y, Yamaguchi I (2001) Introduction of bacterial metabolism into higher plants by polycistronic transgene expression. Biosci Biotechnol Biochem 65:1688–1691

    Google Scholar 

  • Naqvi S, Farré G, Sanahuja G, Capell T, Zhu C, Christou P (2010) When more is better: multigene engineering in plants. Trends Plant Sci 15:48–56

    PubMed  CAS  Google Scholar 

  • Oey M, Lohse M, Kreikemeyer B, Bock R (2009a) Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J 57:436–445

    PubMed  CAS  Google Scholar 

  • Oey M, Lohse M, Scharff LB, Kreikemeyer B, Bock R (2009b) Plastid production of protein antibiotics against pneumonia via a new strategy for high-level expression of antimicrobial proteins. Proc Natl Acad Sci USA 106:6579–6584

    PubMed  CAS  Google Scholar 

  • Ortigosa SM, Diaz-Vivancos P, Clemente-Moreno MJ, Pinto-Marijuan M, Fleck I, Veramendi J, Santos M, Hernandez JA, Torne JM (2010a) Oxidative stress induced in tobacco leaves by chloroplast over-expression of maize plastidial transglutaminase. Planta 232:593–605

    PubMed  CAS  Google Scholar 

  • Ortigosa SM, Fernández-San Millán A, Veramendi J (2010b) Stable production of peptide antigens in transgenic tobacco chloroplasts by fusion to the p53 tetramerisation domain. Transgenic Res 19:703–709

    PubMed  CAS  Google Scholar 

  • Orzaez D, Monforte AJ, Granell A (2010) Using genetic variability available in the breeder’s pool to engineer fruit quality. GM Crops 1:120–127

    PubMed  Google Scholar 

  • Peled-Zehavi H, Danon A (2007) Translation and translational regulation in chloroplasts. In: Bock R (ed) Cell and molecular biology of plastids, vol 19., Topics in current geneticsSpringer, Berlin, pp 249–281

    Google Scholar 

  • Petersen K, Bock R (2011) High-level expression of a suite of thermostable cell wall-degrading enzymes from the chloroplast genome. Plant Mol Biol 76:311–321

    PubMed  CAS  Google Scholar 

  • Pfalz J, Bayraktar OA, Prikryl J, Barkan A (2009) Site-specific binding of a PPR protein defines and stabilizes 5′ and 3′ mRNA termini in chloroplasts. EMBO J 28:2042–2052

    PubMed  CAS  Google Scholar 

  • Poage M, Le Martret B, Jansen MA, Nugent GD, Dix PJ (2011) Modification of reactive oxygen species scavenging capacity of chloroplasts through plastid transformation. Plant Mol Biol 76:371–384

    PubMed  CAS  Google Scholar 

  • Prikryl J, Rojas M, Schuster G, Barkan A (2011) Mechanism of RNA stabilization and translational activation by a pentatricopeptide repeat protein. Proc Natl Acad Sci USA 108:415–420

    PubMed  CAS  Google Scholar 

  • Que Q, Chilton MD, de Fontes CM, He C, Nuccio M, Zhu T, Wu Y, Chen JS, Shi L (2010) Trait stacking in transgenic crops: challenges and opportunities. GM Crops 1:220–229

    PubMed  Google Scholar 

  • Quesada-Vargas T, Ruiz ON, Daniell H (2005) Characterization of heterologous multigene operons in transgenic chloroplasts: transcription, processing, and translation. Plant Physiol 138:1746–1762

    PubMed  CAS  Google Scholar 

  • Reguera M, Peleg Z, Blumwald E (2012) Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops. Biochim Biophys Acta 1819:186–194

    PubMed  CAS  Google Scholar 

  • Rigano MM, Manna C, Giulini A, Pedrazzini E, Capobianchi M, Castilletti C, Di Caro A, Ippolito G, Beggio P, De Giuli Morghen C, Monti L, Vitale A, Cardi T (2009) Transgenic chloroplasts are efficient sites for high-yield production of the vaccinia virus envelope protein A27L in plant cells dagger. Plant Biotechnol J 7:577–591

    Google Scholar 

  • Rigano MM, Scotti N, Cardi T (2012) Unsolved problems in plastid transformation. Bioengineered 3:329–333

    PubMed  Google Scholar 

  • Rogalski M, Carrer H (2011) Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants. Plant Biotechnol J 9:554–564

    PubMed  CAS  Google Scholar 

  • Rojas CA, Hemerly AS, Ferreira PC (2010) Genetically modified crops for biomass increase. Genes and strategies. GM Crops 1:137–142

    PubMed  Google Scholar 

  • Rosellini D (2012) Selectable markers and reporter genes: a well furnished toolbox for plant science and genetic engineering. Crit Rev Plant Sci 31:401–453

    CAS  Google Scholar 

  • Rott M, Martins NF, Thiele W, Lein W, Bock R, Kramer DM, Schottler MA (2011) ATP synthase repression in tobacco restricts photosynthetic electron transport, CO2 assimilation, and plant growth by overacidification of the thylakoid lumen. Plant Cell 23:304–321

    PubMed  CAS  Google Scholar 

  • Rubio-Infante N, Govea-Alonso DO, Alpuche-Solis AG, Garcia-Hernandez AL, Soria-Guerra RE, Paz-Maldonado LM, Ilhuicatzi-Alvarado D, Varona-Santos JT, Verdin-Teran L, Korban SS, Moreno-Fierros L, Rosales-Mendoza S (2012) A chloroplast-derived C4V3 polypeptide from the human immunodeficiency virus (HIV) is orally immunogenic in mice. Plant Mol Biol 78:337–349

    PubMed  CAS  Google Scholar 

  • Ruhlman T, Verma D, Samson N, Daniell H (2010) The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol 152:2088–2104

    PubMed  CAS  Google Scholar 

  • Ruiz ON, Alvarez D, Torres C, Roman L, Daniell H (2011) Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability. Plant Biotechnol J 9:609–617

    PubMed  CAS  Google Scholar 

  • Ruiz ON, Daniell H (2005) Engineering cytoplasmic male sterility via the chloroplast genome by expression of {beta}-ketothiolase. Plant Physiol 138:1232–1246

    PubMed  CAS  Google Scholar 

  • Ruiz ON, Hussein HS, Terry N, Daniell H (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol 132:1344–1352

    PubMed  CAS  Google Scholar 

  • Sanz-Barrio R, Millan AF, Corral-Martinez P, Segui-Simarro JM, Farran I (2011) Tobacco plastidial thioredoxins as modulators of recombinant protein production in transgenic chloroplasts. Plant Biotechnol J 9:639–650

    PubMed  CAS  Google Scholar 

  • Saski C, Lee SB, Fjellheim S, Guda C, Jansen RK, Luo H, Tomkins J, Rognli OA, Daniell H, Clarke JL (2007) Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theor Appl Genet 115:571–590

    PubMed  CAS  Google Scholar 

  • Scharff LB, Childs L, Walther D, Bock R (2011) Local absence of secondary structure permits translation of mRNAs that lack ribosome-binding sites. PLoS Genet 7:e1002155

    PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13:663–670

    PubMed  CAS  Google Scholar 

  • Schnable PS, Wise RP (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci 3:175–180

    Google Scholar 

  • Schuster G, Stern D (2009) RNA polyadenylation and decay in mitochondria and chloroplasts. In: Condon C (ed) Progress in molecular biology and translational science. Molecular biology of RNA processing and decay in prokaryotes. Elsevier Inc., vol 85, pp 393–422

    Google Scholar 

  • Scotti N, Alagna F, Ferraiolo E, Formisano G, Sannino L, Buonaguro L, De Stradis A, Vitale A, Monti L, Grillo S, Buonaguro FM, Cardi T (2009) High-level expression of the HIV-1 Pr55(gag) polyprotein in transgenic tobacco chloroplasts. Planta 229:1109–1122

    PubMed  CAS  Google Scholar 

  • Scotti N, Gargano D, Lenzi P, Cardi T (2011) Transformation of the plastid genome in higher plants. In: Dan Y, Ow DW (eds) Historical technology developments in plant transformation. Bentham Science Publishers Ltd., pp 123–145

    Google Scholar 

  • Scotti N, Rigano MM, Cardi T (2012) Production of foreign proteins using plastid transformation. Biotechnol Adv 30:387–397

    PubMed  CAS  Google Scholar 

  • Segretin ME, Lentz EM, Wirth SA, Morgenfeld MM, Bravo-Almonacid FF (2012) Transformation of Solanum tuberosum plastids allows high expression levels of beta-glucuronidase both in leaves and microtubers developed in vitro. Planta 235:807–818

    PubMed  CAS  Google Scholar 

  • Shanmugabalaji V, Besagni C, Piller LE, Douet V, Ruf S, Bock R, Kessler F (2013) Dual targeting of a mature plastoglobulin/fibrillin fusion protein to chloroplast plastoglobules and thylakoids in transplastomic tobacco plants. Plant Mol Biol 81:13–25

    PubMed  CAS  Google Scholar 

  • Shaver JM, Oldenburg DJ, Bendich AJ (2008) The structure of chloroplast DNA molecules and the effects of light on the amount of chloroplast DNA during development in medicago truncatula. Plant Physiol 146:1064–1074

    PubMed  CAS  Google Scholar 

  • Shen H, Qian B, Chen W, Liu Z, Yang L, Zhang D, Liang W (2010) Immunogenicity of recombinant F4 (K88) fimbrial adhesin FaeG expressed in tobacco chloroplast. Acta Biochim Biophys Sin (Shanghai) 42:558–567

    CAS  Google Scholar 

  • Shimizu M, Goto M, Hanai M, Shimizu T, Izawa N, Kanamoto H, Tomizawa K, Yokota A, Kobayashi H (2008) Selectable tolerance to herbicides by mutated acetolactate synthase genes integrated into the chloroplast genome of tobacco. Plant Physiol 147:1976–1983

    PubMed  CAS  Google Scholar 

  • Singer SD, Liu Z, Cox KD (2012) Minimizing the unpredictability of transgene expression in plants: the role of genetic insulators. Plant Cell Rep 31:13–25

    PubMed  CAS  Google Scholar 

  • Soria-Guerra RE, Alpuche-Solis AG, Rosales-Mendoza S, Moreno-Fierros L, Bendik EM, Martinez-Gonzalez L, Korban SS (2009) Expression of a multi-epitope DPT fusion protein in transplastomic tobacco plants retains both antigenicity and immunogenicity of all three components of the functional oligomer. Planta 229:1293–1302

    PubMed  CAS  Google Scholar 

  • Stern DB, Goldschmidt-Clermont M, Hanson MR (2010) Chloroplast RNA metabolism. Annu Rev Plant Biol 61:125–155

    PubMed  CAS  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526–8530

    PubMed  CAS  Google Scholar 

  • Tangphatsornruang S, Birch-Machin I, Newell CA, Gray JC (2011) The effect of different 3′ untranslated regions on the accumulation and stability of transcripts of a gfp transgene in chloroplasts of transplastomic tobacco. Plant Mol Biol 76:385–396

    PubMed  CAS  Google Scholar 

  • Thyssen G, Svab Z, Maliga P (2012) Exceptional inheritance of plastids via pollen in Nicotiana sylvestris with no detectable paternal mitochondrial DNA in the progeny. Plant J 72:84–88

    PubMed  CAS  Google Scholar 

  • Tiller N, Weingartner M, Thiele W, Maximova E, Schöttler MA, Bock R (2012) The plastid-specific ribosomal proteins of Arabidopsis thaliana can be divided into non-essential proteins and genuine ribosomal proteins. Plant J 69:302–316

    PubMed  CAS  Google Scholar 

  • Tillich M, Hardel SL, Kupsch C, Armbruster U, Delannoy E, Gualberto JM, Lehwark P, Leister D, Small ID, Schmitz-Linneweber C (2009) Chloroplast ribonucleoprotein CP31A is required for editing and stability of specific chloroplast mRNAs. Proc Natl Acad Sci USA 106:6002–6007

    PubMed  CAS  Google Scholar 

  • Tillich M, Krause K (2010) The ins and outs of editing and splicing of plastid RNAs: lessons from parasitic plants. New Biotechnol 27:256–266

    CAS  Google Scholar 

  • Tungsuchat-Huang T, Slivinski KM, Sinagawa-Garcia SR, Maliga P (2011) Visual spectinomycin resistance (aadA(au)) gene for facile identification of transplastomic sectors in tobacco leaves. Plant Mol Biol 76:453–461

    PubMed  CAS  Google Scholar 

  • Valkov VT, Gargano D, Manna C, Formisano G, Dix PJ, Gray JC, Scotti N, Cardi T (2011) High efficiency plastid transformation in potato and regulation of transgene expression in leaves and tubers by alternative 5’ and 3’ regulatory sequences. Transgenic Res 20:137–151

    PubMed  CAS  Google Scholar 

  • Valkov VT, Scotti N, Kahlau S, MacLean D, Grillo S, Gray JC, Bock R, Cardi T (2009) Genome-wide analysis of plastid gene expression in potato leaf chloroplasts and tuber amyloplasts: transcriptional and posttranscriptional control. Plant Physiol 150:2030–2044

    PubMed  CAS  Google Scholar 

  • van Wijk KJ, Baginsky S (2011) Plastid proteomics in higher plants: current state and future goals. Plant Physiol 155:1578–1588

    PubMed  Google Scholar 

  • Verhounig A, Karcher D, Bock R (2010) Inducible gene expression from the plastid genome by a synthetic riboswitch. Proc Natl Acad Sci USA 107:6204–6209

    PubMed  CAS  Google Scholar 

  • Verma D, Kanagaraj A, Jin S, Singh ND, Kolattukudy PE, Daniell H (2010a) Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars. Plant Biotechnol J 8:332–350

    PubMed  CAS  Google Scholar 

  • Verma D, Moghimi B, LoDuca PA, Singh HD, Hoffman BE, Herzog RW, Daniell H (2010b) Oral delivery of bioencapsulated coagulation factor IX prevents inhibitor formation and fatal anaphylaxis in hemophilia B mice. Proc Natl Acad Sci USA 107:7101–7106

    PubMed  CAS  Google Scholar 

  • Waheed MT, Thönes N, Müller M, Hassan SW, Gottschamel J, Lössl E, Kaul HP, Lössl AG (2011a) Plastid expression of a double-pentameric vaccine candidate containing human papillomavirus-16 L1 antigen fused with LTB as adjuvant: transplastomic plants show pleiotropic phenotypes. Plant Biotechnol J 9:651–660

    PubMed  CAS  Google Scholar 

  • Waheed MT, Thönes N, Müller M, Hassan SW, Razavi NM, Lössl E, Kaul HP, Lössl AG (2011b) Transplastomic expression of a modified human papillomavirus L1 protein leading to the assembly of capsomeres in tobacco: a step towards cost-effective second-generation vaccines. Transgenic Res 20:271–282

    PubMed  CAS  Google Scholar 

  • Walter M, Piepenburg K, Schöttler MA, Petersen K, Kahlau S, Tiller N, Drechsel O, Weingartner M, Kudla J, Bock R (2010) Knockout of the plastid RNase E leads to defective RNA processing and chloroplast ribosome deficiency. Plant J 64:851–863

    PubMed  CAS  Google Scholar 

  • Wang Y, Yau YY, Perkins-Balding D, Thomson JG (2011) Recombinase technology: applications and possibilities. Plant Cell Rep 30:267–285

    PubMed  CAS  Google Scholar 

  • Webster DE, Thomas MC (2012) Post-translational modification of plant-made foreign proteins; glycosylation and beyond. Biotechnol Adv 30:410–418

    PubMed  CAS  Google Scholar 

  • Whitney SM, Kane HJ, Houtz RL, Sharwood RE (2009) Rubisco oligomers composed of linked small and large subunits assemble in tobacco plastids and have higher affinities for CO2 and O2. Plant Physiol 149:1887–1895

    PubMed  CAS  Google Scholar 

  • Wicke S, Schneeweiss G, de Pamphilis C, Müller K, Quandt D (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 76:273–297

    PubMed  CAS  Google Scholar 

  • Wurbs D, Ruf S, Bock R (2007) Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 49:276–288

    PubMed  CAS  Google Scholar 

  • Yabuta Y, Tanaka H, Yoshimura S, Suzuki A, Tamoi M, Maruta T, Shigeoka S (2013) Improvement of vitamin E quality and quantity in tobacco and lettuce by chloroplast genetic engineering. Transgenic Res 22:391–402

    PubMed  CAS  Google Scholar 

  • Yang H, Gray BN, Ahner BA, Hanson MR (2013) Bacteriophage 5′ untranslated regions for control of plastid transgene expression. Planta 237:517–527

    PubMed  CAS  Google Scholar 

  • Ye GN, Hajdukiewicz PT, Broyles D, Rodriguez D, Xu CW, Nehra N, Staub JM (2001) Plastid-expressed 5-enolpyruvylshikimate-3-phosphate synthase genes provide high level glyphosate tolerance in tobacco. Plant J 25:261–270

    PubMed  CAS  Google Scholar 

  • Youm JW, Jeon JH, Kim H, Min SR, Kim MS, Joung H, Jeong WJ, Kim HS (2010) High-level expression of a human β-site APP cleaving enzyme in transgenic tobacco chloroplasts and its immunogenicity in mice. Transgenic Res 19:1099–1108

    PubMed  CAS  Google Scholar 

  • Zerges W (2004) Regulation of translation in chloroplasts. In: Daniell H, Chase C (eds) Molecular biology of plant organelles. Springer, Dordrecht, pp 443–490

    Google Scholar 

  • Zhang J, Ruf S, Hasse C, Childs L, Scharff LB, Bock R (2012) Identification of cis-elements conferring high levels of gene expression in non-green plastids. Plant J 72:115–128

    PubMed  CAS  Google Scholar 

  • Zhang J, Tan W, Yang XH, Zhang HX (2008) Plastid-expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco. Plant Cell Rep 27:1113–1124

    PubMed  CAS  Google Scholar 

  • Zhang XH, Webb J, Huang YH, Lin L, Tang RS, Liu A (2011) Hybrid Rubisco of tomato large subunits and tobacco small subunits is functional in tobacco plants. Plant Sci 180:480–488

    PubMed  CAS  Google Scholar 

  • Zhou F, Karcher D, Bock R (2007) Identification of a plastid intercistronic expression element (IEE) facilitating the expression of stable translatable monocistronic mRNAs from operons. Plant J 52:961–972

    PubMed  CAS  Google Scholar 

  • Zoschke R, Kroeger T, Belcher S, Schöttler MA, Barkan A, Schmitz-Linneweber C (2012) The pentatricopeptide repeat-SMR protein ATP4 promotes translation of the chloroplast atpB/E mRNA. Plant J 72:547–558

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodoro Cardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scotti, N., Bellucci, M., Cardi, T. (2013). The Chloroplasts as Platform for Recombinant Proteins Production. In: Duchêne, AM. (eds) Translation in Mitochondria and Other Organelles. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39426-3_10

Download citation

Publish with us

Policies and ethics