Skip to main content

Optional Techniques

  • Chapter
  • First Online:
Knee Joint Arthroplasty
  • 2101 Accesses

Abstract

The development of surgical tools and technology has extended its territory to newer surgical fields. Good examples include computer assisted surgery and arthroscopic surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Aglietti P, Baldini A, Sensi L. Quadriceps-sparing versus mini-subvastus approach in total knee arthroplasty. Clin Orthop. 2006;452:106–11.

    Article  CAS  PubMed  Google Scholar 

  • Amiot LP, Poulin F. Computed tomography-based navigation for hip, knee, and spine surgery. Clin Orthop. 2004;421:77–86.

    Article  PubMed  Google Scholar 

  • Anderson KC, Buehler KC, Markel DC. Computer assisted navigation in total knee arthroplasty: comparison with conventional methods. J Arthroplasty. 2005;20 Suppl 3:132–8.

    Article  PubMed  Google Scholar 

  • Bargar WL. Robots in orthopaedic surgery: past, present, and future. Clin Orthop. 2007;463:31–6.

    PubMed  Google Scholar 

  • Barrack CM, Barnes CL, Burnett RS, et al. Minimal incision surgery as a risk factor for early failure of total knee arthroplasty. J Arthroplasty. 2009;24:489–98.

    Article  PubMed  Google Scholar 

  • Bathis H, Perlick L, Tingart M, et al. Alignment in total knee arthroplasty. A comparison of computer assisted surgery with the conventional technique. J Bone Joint Surg. 2004;86-B:682–7.

    Article  Google Scholar 

  • Bauwens K, Matthes G, Wich M, et al. Navigated total knee replacement. A meta-analysis. J Bone Joint Surg. 2007;89-A:261–9.

    Article  Google Scholar 

  • Bellemans J, Vandenneucker H, Vanlauwe J. Robot-assisted total knee arthroplasty. Clin Orthop. 2007;464:111–6.

    PubMed  Google Scholar 

  • Bonutti P, Dethmers D, Stiehl JB. Case report: femoral shaft fracture resulting from femoral tracker placement in navigated TKA. Clin Orthop. 2008;466:1499–502.

    Article  PubMed  Google Scholar 

  • Bonutti PM, Mont MA, McMahon M, et al. Minimally invasive total knee arthroplasty. J Bone Joint Surg. 2004;86-A Suppl 2:26–32.

    PubMed  Google Scholar 

  • Bonutti PM, Neal DJ, Kester MA. Minimal incision total knee arthroplasty using the suspended leg techinque. Orthopedics. 2003;26:899–903.

    PubMed  Google Scholar 

  • Chauhan SK, Scott RG, Breidahl W, et al. Computer-assisted knee arthroplasty versus a conventional jig-based technique. A randomized, prospective trial. J Bone Joint Surg. 2004;86-B:372–7.

    Article  Google Scholar 

  • Cheng T, Liu T, Zhang G, et al. Does minimally invasive surgery improve short-term recovery in total knee arthroplasty? Clin Orthop. 2010;468:1635–48.

    Article  PubMed  Google Scholar 

  • Choi YJ, Tanavalee A, Pak AH, et al. Minimally invasive surgery for total knee arthroplasty. In: Scuderi GR, editor. MIS of the hip and the knee: a clinical perspective. 1st ed. New York: Springer; 2004. p. 187–98.

    Chapter  Google Scholar 

  • Chung BJ, Kang YG, Chang CB, et al. Differences between sagittal femoral mechanical and distal reference axes should be considered in navigated TKA. Clin Orthop. 2009;467:2403–13.

    Article  PubMed  Google Scholar 

  • Clemens U, Miehlke RK. Experience using the latest OrthoPilot TKA software: a comparative study. Surg Technol Int. 2003;11:265–73.

    PubMed  Google Scholar 

  • Cook JL, Scuderi GR, Tenholder M. Incidence of lateral release in total knee arthroplasty in standard and mini-incision approaches. Clin Orthop. 2006;452:123–6.

    Article  PubMed  Google Scholar 

  • Church JS, Scadden JE, Gupta RR, et al. Embolic phenomena during computer-assisted and conventional total knee replacement. J Bone Joint Surg. 2007;89-B:481–5.

    Article  Google Scholar 

  • Delp SL, Stulberg SD, Davies B, et al. Computer assisted knee replacement. Clin Orthop. 1998;354:49–56.

    Article  PubMed  Google Scholar 

  • Dutton AQ, Yeo SJ, Yang KY, et al. Computer-assisted minimally invasive total knee arthroplasty compared with standard total knee arthroplasty. A prospective, randomized study. J Bone Joint Surg. 2008;90-A:2–9.

    Article  Google Scholar 

  • Ensini A, Catani F, Leardini A, et al. Alignments and clinical results in conventional and navigated total knee arthroplasty. Clin Orthop. 2007;457:156–62.

    CAS  PubMed  Google Scholar 

  • Fehring TK, Berend KR, Hofmann S, et al. Advanced technologies in performing total knee arthroplasty: roundtable discussion. In: Scott WN, editor. Surgery of the knee. 5th ed. Philadelphia: Churchill Livingstone; 2011. p. 1283–92.

    Google Scholar 

  • Floren M, Davis J, Peterson MG, et al. A mini-midvastus capsular approach with patellar displacement decreases the prevalence of patella baja. J Arthroplasty. 2007;22:51–7.

    Article  PubMed  Google Scholar 

  • Garg A, Walker PS. Prediction of total knee motion using a three-dimensional computer graphics model. J Biochem. 1988;3:67–72.

    Google Scholar 

  • Haaker RG, Stockheim M, Kamp M, et al. Computer-assisted navigation increases precision of component placement in total knee arthroplasty. Clin Orthop. 2005;433:152–9.

    PubMed  Google Scholar 

  • Hafez M. Custom-made cutting guides for total knee arthroplasty. In: Scott WN, editor. Surgery of the knee. 5th ed. Philadelphia: Churchill Livingstone; 2011. p. 1240–54.

    Google Scholar 

  • Hafez MA, Jaramaz B, Digioia III A. Computer-assisted knee surgery: an overview. In: Scott WN, editor. Surgery of the knee. 4th ed. Philadelphia: Churchill Livingstone; 2006. p. 1655–73.

    Google Scholar 

  • Heal J, Blewitt N. Kinemax total knee arthroplasty: trial by template. J Arthroplasty. 2002;17:90–4.

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Vaquero D, Suarez-Vazquez A, Iglesias-Fernandez S. Can computer assistance improve the clinical and functional scores in total knee arthroplasty? Clin Orthop. 2011;469:3436–42.

    Article  PubMed  Google Scholar 

  • Hofmann AA, McCandless J. Imageless computer navigation in total knee arthroplasty: the simpler wave of future. In: Scott WN, editor. Surgery of the knee. 5th ed. Philadelphia: Churchill Livingstone; 2011. p. 1217–22.

    Google Scholar 

  • Huang HT, Su JY, Chang JK, et al. The early clinical outcome of minimally invasive quadriceps-sparing total knee arthroplasty: report of a 2-year follow-up. J Arthroplasty. 2007;22:1007–12.

    Article  PubMed  Google Scholar 

  • Jenny JY, Clemens U, Kohler S, et al. Consistency of implantation of a total knee arthroplasty with a non-image-based navigation system: a case-control study of 235 cases compared with 235 conventionally implanted prostheses. J Arthroplasty. 2005;20:832–9.

    Article  PubMed  Google Scholar 

  • Kalairajah Y, Cossey AJ, Verrrall GM, et al. Are systemic emboli reduced in computer-assisted knee surgery? A prospective, randomised, clinical trial. J Bone Joint Surg. 2006;88-B:198–202.

    Article  Google Scholar 

  • Kienzle III TC, Stulberg SD, Peshkin M, et al. A computer-assisted total knee replacement surgical system using a calibrated robot. In: Taylor RH, editor. Computer-integrated surgery. 1st ed. London: The MIT Press; 1996. p. 409–16.

    Google Scholar 

  • Kim YH, Kim JS, Yoon SH. Alignment and orientation of the components in total knee replacement with and without navigation support: a prospective, randomised study. J Bone Joint Surg. 2007;89-B:471–6.

    Article  Google Scholar 

  • Klein GR, Austin MS, Smith EB, et al. Total knee arthroplasty using computer-assisted navigation in patients with deformities of the femur and tibia. J Arthroplasty. 2006;21:284–8.

    Article  PubMed  Google Scholar 

  • Krackow KA. Fine tuning your next total knee: computer assisted surgery. Orthopedics. 2003;26:971–2.

    PubMed  Google Scholar 

  • Krackow KA, Serpe L, Phillips MJ, et al. Operative technique: a new technique for determining proper mechanical axis alignment during total knee arthroplasty: progress toward computer-assisted TKR. Orthopedics. 1999;22:698–702.

    CAS  PubMed  Google Scholar 

  • Lionberger DR. Computer-assisted navigation: Minimally invasive surgery for total knee replacement. In: Scott WN, editor. Surgery of the knee. 5th ed. Philadelphia: Churchill Livingstone; 2011a. p. 1275–82.

    Google Scholar 

  • Lionberger DR. Electromagnetic computer-assisted navigation. In: Scott WN, editor. Surgery of the knee. In: Scott WN ed. Surgery of the knee. 5th ed. Philadelphia: Churchill Livingstone; 2011b. p. 1223–31.

    Google Scholar 

  • Lionberger DR. Electromagnetic computer assisted navigation in total knee replacement. In: Scott WN, editor. Surgery of the knee. 4th ed. Philadelphia: Churchill Livingstone; 2006. p. 1705–15.

    Google Scholar 

  • Luring C, Hufner T, Perlick L, et al. The effectiveness of sequential medial soft tissue release on coronal alignment in total knee arthroplasty: using a computer navigation model. J Arthroplasty. 2006;21:428–34.

    Article  PubMed  Google Scholar 

  • Mai S, Siebert WE, Heeckt PF. Robotics in total knee arthroplasty. In: Scott WN, editor. Surgery of the knee. 5th ed. Philadelphia: Churchill Livingstone; 2011. p. 1269–74.

    Google Scholar 

  • Martelli M, Mareacci M, Nofrini L, et al. Computer-and robot-assisted total knee replacement: analysis of a new surgical procedure. Ann Biomed Eng. 2000;28:1146–53.

    Article  CAS  PubMed  Google Scholar 

  • Mason JB, Fehring TK, Estok R, et al. Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery. J Arthroplasty. 2007;22:1097–106.

    Article  PubMed  Google Scholar 

  • Matsen III FA, Garbini JL, Sidles JA, et al. Robotic assistance in orthopaedic surgery. A proof of principle using distal femoral arthroplasty. Clin Orthop. 1993;296:178–86.

    PubMed  Google Scholar 

  • Matsumoto T, Muratsu H, Tsumura N, et al. Soft tissue balance measurement in posterior-stabilized total knee arthroplasty with a navigation system. J Arthroplasty. 2009;24:358–64.

    Article  PubMed  Google Scholar 

  • Matziolis G, Krocker D, Weiss U, et al. A prospective, randomized study of computer-assisted and conventional total knee arthroplasty. Three-dimensional evaluation of implant alignment and rotation. J Bone Joint Surg. 2007;89-A:236–43.

    Article  Google Scholar 

  • Nunley RM, Ellison BS, Zhu J, et al. Do patient-specific guides improve coronal alignment in total knee arthroplasty? Clin Orthop. 2012;470:895–902.

    Article  PubMed  Google Scholar 

  • Patil N, Nett MP, Tria Jr A, et al. Surgical approaches in total knee arthroplasty: Standard and MIS techniques. In: Scott WN, editor. Surgery of the knee. 5th ed. Philadelphia: Churchill Livingstone; 2011. p. 1029–41.

    Google Scholar 

  • Mihalko WM, Duquin T, Axelrod JR, et al. Location and number of cortical fixation points and the effect on reference base stability during computer-navigated total knee arthroplasty. J Arthroplasty. 2007;22:605–8.

    Article  PubMed  Google Scholar 

  • Minoda Y, Kobayashi A, Iwaki H, et al. TKA sagittal alignment with navigation systems and conventional techniques vary only a few degrees. Clin Orthop. 2009;467:1000–6.

    Article  PubMed  Google Scholar 

  • Moon YW, Seo JG, Lim SJ, et al. Variability in femoral component rotation reference axes measured during navigation-assisted total knee arthroplasty using gap technique. J Arthroplasty. 2010;25:238–43.

    Article  PubMed  Google Scholar 

  • Mullaji A, Shetty GM. Computer-assisted total knee arthroplasty for arthritis with extra-articular deformity. J Arthroplasty. 2009;24:1164-1169 e1161.

    Google Scholar 

  • Munjal S, Krackow KA. Computer-assisted total knee replacement. In: Scott WN, editor. Surgery of the knee. 4th ed. Philadelphia: Churchill Livingstone; 2006. p. 1689–97.

    Google Scholar 

  • Nabeyama R, Matsua S, Miura H, et al. The accuracy of image guided knee replacement based on computed tomography. J Bone Joint Surg. 2003;86-B:366–71.

    Google Scholar 

  • Niki Y, Matsumoto H, Otani T, et al. Accuracy of implant positioning for minimally invasive total knee arthroplasty in patients with severe varus deformity. J Arthroplasty. 2010;25:381–6.

    Article  PubMed  Google Scholar 

  • Nishihara S, Sugano N, Ikai M, et al. Accuracy evaluation of a shape-based registration method for a computer navigation system for total knee arthroplasty. J Knee Surgery. 2003;16:98–105.

    Google Scholar 

  • Park SE, Lee CT. Comparison of robotic-assisted and conventional manual implantation of a primary total knee arthroplasty. J Arthroplasty. 2007;22:1054–9.

    Article  PubMed  Google Scholar 

  • Perlick L, Bathis H, Tingart M, et al. Navigation in total-knee arthroplasty: CT-based implantation compared with the conventional technique. Acta Orthop Scand. 2004;75:464–70.

    Article  PubMed  Google Scholar 

  • Picard F, Moody J, Jaramaz A, et al. A classification proposal for computer-assisted knee systems. In: Scott LD et al., editors. Medical image computing and computer-assisted intervention-MICCAI 2000, Lecture notes in computer science,1935; 2000.

    Google Scholar 

  • Radermacher K, Portheine F, Anton M, et al. Computer assisted orthopaedic surgery with image based individual templates. Clin Orthop. 1998;354:28–38.

    Article  PubMed  Google Scholar 

  • Repicci JA, Eberte RW. Minimally invasive surgical technique for unicondylar knee arthroplasty. J South Orthop Assoc. 1999;8:20–7.

    CAS  PubMed  Google Scholar 

  • Romanowski MR, Repicci JA. Minimally invasive unicondylar arthroplasty: eight-year follow up. J Knee Surg. 2002;15:17–22.

    PubMed  Google Scholar 

  • Romanowski MR, Repicci MR. Technical aspects of medial versus lateral minimally invasive unicondylar arthroplasty. Orthopedics. 2003;26:289–93.

    PubMed  Google Scholar 

  • Saragaglia D, Picard F, Chaussard C, et al. Computer-assisted knee arthroplasty: comparison with a conventional procedure. Results of 50 cases in a prospective randomized study. Rev Chir Orthop Reparatrice Appar Mot. 2001;87:18–28.

    CAS  PubMed  Google Scholar 

  • Schroer WC, Diesfeld PJ, Reedy ME, et al. Association of increased knee flexion and patella clunk syndrome after mini-subvastus total knee arthroplasty. J Arthroplasty. 2009;24:281–7.

    Article  PubMed  Google Scholar 

  • Scuderi GR, Tenholder M, Capeci C. Surgical approaches in mini-incision total knee arthroplasty. Clin Orthop. 2004;428:61–7.

    Article  PubMed  Google Scholar 

  • Scuderi GR, Tria AJ. Minimally invasive total knee arthroplasty. In: Scott WN, editor. Surgery of the knee. 4th ed. Philadelphia: Churchill Livingstone; 2006. p. 1631–9.

    Google Scholar 

  • Seon JK, Song EK. Navigation-assisted less invasive total knee arthroplasty compared with conventional total knee arthroplasty: a randomized prospective trial. J Arthroplasty. 2006;21:777–82.

    Article  PubMed  Google Scholar 

  • Siebert W, Mai S, Kober R, et al. Technique and first clinical results of robot-assisted total knee replacement. Knee. 2002;9:173–80.

    Article  PubMed  Google Scholar 

  • Song EK, Seon JK, Yoon TR, et al. Comparative study of stability after total knee arthroplasties between navigation system and conventional techniques. J Arthroplasty. 2007;22:1107–11.

    Article  PubMed  Google Scholar 

  • Sparmann M, Wolk B, Czupalla H, et al. Positioning of total knee arthroplasty with and without navigation support. A prospective, randomized study. J Bone Joint Surg. 2003;85-B:830–5.

    Google Scholar 

  • Spencer JM, Chauhan SK, Sloan K, et al. Computer navigation versus conventional total knee replacement: no difference in functional results at two years. J Bone Joint Surg. 2007;89-B:477–80.

    Article  Google Scholar 

  • Stiehl JB. Computer navigation in primary total knee arthroplasty. In: Scott WN, editor. Surgery of the knee. 5th ed. Philadelphia: Churchill Livingstone; 2011. p. 1201–6.

    Google Scholar 

  • Stockl B, Nogler M, Rosiek R, et al. Navigation improves accuracy of rotational alignment in total knee arthroplasty. Clin Orthop. 2004;426:180–6.

    Article  PubMed  Google Scholar 

  • Stulburg SD. Computer-navigated total knee arthroplasty. In: Scott WN, editor. Surgery of the knee. 4th ed. Philadelphia: Churchill Livingstone; 2006. p. 1675–88.

    Google Scholar 

  • Stulberg SD. Computer-navigated total knee arthroplasty. In: Scott WN, editor. Surgery of the knee. 5th ed. Philadelphia: Churchill Livingstone; 2011. p. 1207–16.

    Google Scholar 

  • Stulberg SD, Loan P, Sarin V. Computer-assisted navigation in total knee replacement: results of an initial experience in thirty-five patients. J Bone Joint Surg. 2002;84-A:90–8.

    PubMed  Google Scholar 

  • Tanavalee A, Thiengwittayaporn S, Itiravivong P. Progressive quadriceps incision during minimally invasive surgery for total knee arthroplasty: the effect on early postoperative ambulation. J Arthroplasty. 2007;22:1013–8.

    Article  PubMed  Google Scholar 

  • Teter KE, Bregman D, Colwell Jr CW. Accuracy of intramedullary versus extramedullary tibial alignment cutting systems in total knee arthroplasty. Clin Othrop. 1995;321:106–10.

    Google Scholar 

  • Tria AJ. Advancements in minimally invasive total knee arthroplasty. Orthopedics. 2003;26:859–63.

    Google Scholar 

  • Tria AJ. Minimally invasive total knee arthroplasty: the importance of instrumentation. Orthop Clin N Am. 2004;35:227–34.

    Article  Google Scholar 

  • Tria AJ, Coon TM. Minimal incision total knee arthroplasty: early experience. Clin Orthop. 2003;416:185–90.

    Article  PubMed  Google Scholar 

  • Victor J, Hoste D. Image-based computer-assisted total knee arthroplasty leads to lower variability in coronal alignment. Clin Orthop. 2004;428:131–9.

    Article  PubMed  Google Scholar 

  • Whiteside LA. Mini incision: occasionally desirable, rarely necessary: in the affirmative. J Arthroplasty. 2006;21 Suppl 1:16–8.

    Article  PubMed  Google Scholar 

  • Yoo JH, Han DY, Han CD, et al. Radiological evaluation of quadriceps-sparing minimally invasive total knee arthroplasty. J Korean Orthop Assoc. 2006;41:454–60.

    Google Scholar 

  • Yoshino N, Takai S, Ohtsuki Y, et al. Computed tomography measurement of the surgical and clinical transepicondylar axis of the distal femur in osteoarthritic knees. J Arthroplasty. 2001;16:493–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cho, W. (2014). Optional Techniques. In: Knee Joint Arthroplasty. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39389-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39389-1_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39388-4

  • Online ISBN: 978-3-642-39389-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics