Geometry of Continued Fractions pp 357-389 | Cite as
Other Generalizations of Continued Fractions
- 2.2k Downloads
Abstract
In this chapter we present some other generalizations of regular continued fractions to the multidimensional case. The main goal for us here is to give different geometric constructions related to such continued fractions (whenever possible). We say a few words about Minkowski–Voronoi continued fractions, triangle sequences related to Farey addition, O’Hara’s algorithm related to decomposition of rectangular parallelepipeds, geometric continued fractions, and determinant generalizations of continued fractions. Finally, we describe the relation of regular continued fractions to rational knots and links.
We do not pretend to give a complete list of generalizations of continued fractions. The idea is to show the diversity of generalizations.
Keywords
Continue Fraction Voronoi Tessellation Multidimensional Case Relative Minimum Euclidean AlgorithmReferences
- 1.F. Aicardi, Symmetries of quadratic form classes and of quadratic surd continued fractions. I. A Poincaré tiling of the de Sitter world. Bull. Braz. Math. Soc. (N.S.) 40(3), 301–340 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
- 2.F. Aicardi, Symmetries of quadratic form classes and of quadratic surd continued fractions. II. Classification of the periods’ palindromes. Bull. Braz. Math. Soc. (N.S.) 41(1), 83–124 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
- 3.G.E. Andrews, The Theory of Partitions. Cambridge Mathematical Library (Cambridge University Press, Cambridge, 1998). Reprint of the 1976 original zbMATHGoogle Scholar
- 5.V. Arnold, Arithmetics of binary quadratic forms, symmetry of their continued fractions and geometry of their de Sitter world. Bull. Braz. Math. Soc. (N.S.) 34(1), 1–42 (2003). Dedicated to the 50th anniversary of IMPA MathSciNetzbMATHCrossRefGoogle Scholar
- 12.S. Assaf, L.-C. Chen, T. Cheslack-Postava, B. Cooper, A. Diesl, T. Garrity, M. Lepinski, A. Schuyler, A dual approach to triangle sequences: a multidimensional continued fraction algorithm. Integers 5(1), A8 (2005) MathSciNetGoogle Scholar
- 17.O.R. Beaver, T. Garrity, A two-dimensional Minkowski ?(x) function. J. Number Theory 107(1), 105–134 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
- 24.A.J. Brentjes, Multidimensional Continued Fraction Algorithms. Mathematical Centre Tracts, vol. 145 (Mathematisch Centrum, Amsterdam, 1981) Google Scholar
- 26.V. Brun, Algorithmes euclidiens pour trois et quatre nombres, in Treizième congrès des mathématiciens scandinaves, tenu à Helsinki 18–23 août 1957 (Mercators Tryckeri, Helsinki, 1958), pp. 45–64 Google Scholar
- 30.G. Bullig, Zur Kettenbruchtheorie im Dreidimensionalen (Z 1). Abh. Math. Semin. Hansische Univ. 13, 321–343 (1940) MathSciNetCrossRefGoogle Scholar
- 32.V.A. Bykovskiĭ, Connectivity of Minkowskii Graph for Multidimensional Complete Lattices (Dalnauka, Vladivostok, 2000) Google Scholar
- 33.V.A. Bykovskiĭ, O.A. Gorkusha, Minimal bases of three-dimensional complete lattices. Sb. Math. 192(1–2), 215–223 (2001). Russian version: Mat. Sb. 192(2), 57–66 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
- 36.J.H. Conway, An enumeration of knots and links, and some of their algebraic properties, in Computational Problems in Abstract Algebra, Oxford, 1967 (Pergamon, Oxford, 1970), pp. 329–358 Google Scholar
- 44.K. Dasaratha, L. Flapan, T. Garrity, Ch. Lee, C. Mihaila, N. Neumann-Chun, S. Peluse, M. Stroffregen, Cubic irrationals and periodicity via a family of multi-dimensional continued fraction algorithms (2012). arXiv:1208.4244
- 45.K. Dasaratha, L. Flapan, T. Garrity, Ch. Lee, C. Mihaila, N. Neumann-Chun, S. Peluse, M. Stroffregen, A generalized family of multidimensional continued fractions: TRIP maps (2012). arXiv:1206.7077
- 56.J. Fiala, P. Kleban, Generalized number theoretic spin chain-connections to dynamical systems and expectation values. J. Stat. Phys. 121(3–4), 553–577 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
- 58.C. Freiling, M. Laczkovich, D. Rinne, Rectangling a rectangle. Discrete Comput. Geom. 17(2), 217–225 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
- 60.T. Garrity, On periodic sequences for algebraic numbers. J. Number Theory 88(1), 86–103 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
- 61.T. Garrity, A thermodynamic classification of real numbers. J. Number Theory 130(7), 1537–1559 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
- 62.T. Garrity, A thermodynamic classification of pairs of real numbers via the triangle multi-dimensional continued fraction (2012). arXiv:1205.5663
- 64.I. Gelfand, V. Retakh, Quasideterminants. I. Sel. Math. New Ser. 3(4), 517–546 (1997) MathSciNetzbMATHCrossRefGoogle Scholar
- 65.I.M. Gelfand, V.S. Retakh, Determinants of matrices over noncommutative rings. Funct. Anal. Appl. 25(2), 91–102 (1991). Russian version: Funkc. Anal. Prilozh. 25(2), 13–25 (1991) MathSciNetCrossRefGoogle Scholar
- 66.I.M. Gelfand, V.S. Retakh, Theory of noncommutative determinants, and characteristic functions of graphs. Funct. Anal. Appl. 26(4), 231–246 (1993). Russian version: Funkc. Anal. Prilozh. 26(4), 1–20 (1992) MathSciNetCrossRefGoogle Scholar
- 71.O.A. Gorkusha, Minimal bases of three-dimensional complete lattices. Math. Notes - Ross. Akad. 69(3–4), 320–328 (2001). Russian version: Mat. Zametki 69(3), 353–362 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
- 74.J. Hančl, A. Jaššová, P. Lertchoosakul, R. Nair, On the metric theory of p-adic continued fractions. Indag. Math. (N.S.) 24(1), 42–56 (2013) MathSciNetzbMATHCrossRefGoogle Scholar
- 75.H. Hancock, Development of the Minkowski Geometry of Numbers, vol. 1 (Dover, New York, 1964) zbMATHGoogle Scholar
- 76.H. Hancock, Development of the Minkowski Geometry of Numbers, vol. 2 (Dover, New York, 1964) zbMATHGoogle Scholar
- 80.J. Hirsh, L.C. Washington, p-adic continued fractions. Ramanujan J. 25(3), 389–403 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
- 82.A.A. Illarionov, Estimates for the number of relative minima of lattices. Math. Notes - Ross. Akad. 89(1–2), 245–254 (2011). Russian version: Mat. Zametki 89(2), 249–259 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
- 83.A.A. Illarionov, The average number of relative minima of three-dimensional integer lattices. St. Petersburg Math. J. 23(3), 551–570 (2012). Russian version: Algebra Anal. 23(3), 189–215 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
- 85.C.G.J. Jacobi, Allgemeine Theorie der Kettenbruchähnlichen Algorithmen, in welchen jede Zahl aus drei vorhergehenden gebildet wird (Aus den hinterlassenen Papieren von C. G. J. Jacobi mitgetheilt durch Herrn E. Heine). J. Reine Angew. Math. 69(1), 29–64 (1868) zbMATHCrossRefGoogle Scholar
- 87.V.F. Kagan, Origins of Determinant Theory (Gos. Izd. Ukraine, Odessa, 1922) (in Russian) Google Scholar
- 100.O.N. Karpenkov, A.V. Ustinov, On construction of the Minkowski-Voronoi complex. Preprint (2013) Google Scholar
- 103.L.H. Kauffman, S. Lambropoulou, On the classification of rational knots. Enseign. Math. (2) 49(3–4), 357–410 (2003) MathSciNetzbMATHGoogle Scholar
- 104.L.H. Kauffman, S. Lambropoulou, On the classification of rational tangles. Adv. Appl. Math. 33(2), 199–237 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
- 110.A. Knauf, On a ferromagnetic spin chain. Commun. Math. Phys. 153(1), 77–115 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
- 111.A. Knauf, On a ferromagnetic spin chain. II. Thermodynamic limit. J. Math. Phys. 35(1), 228–236 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
- 112.A. Knauf, Number theory, dynamical systems and statistical mechanics. Rev. Math. Phys. 11(8), 1027–1060 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
- 114.M. Konvalinka, I. Pak, Geometry and complexity of O’Hara’s algorithm. Adv. Appl. Math. 42(2), 157–175 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
- 120.C. Kraaikamp, I. Smeets, Approximation results for α-Rosen fractions. Unif. Distrib. Theory 5(2), 15–53 (2010) MathSciNetzbMATHGoogle Scholar
- 126.M. Laczkovich, G. Szekeres, Tilings of the square with similar rectangles. Discrete Comput. Geom. 13(3–4), 569–572 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
- 128.J.C. Lagarias, Geodesic multidimensional continued fractions. Proc. Lond. Math. Soc. (3) 69(3), 464–488 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
- 133.K. Mahler, Lectures on Diophantine Approximations. Part I: g-adic Numbers and Roth’s Theorem (University of Notre Dame Press, Notre Dame, 1961). Prepared from the notes by R.P. Bambah of my lectures given at the University of Notre Dame in the Fall of 1957 zbMATHGoogle Scholar
- 138.A. Messaoudi, A. Nogueira, F. Schweiger, Ergodic properties of triangle partitions. Monatshefte Math. 157(3), 283–299 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
- 139.H. Minkowski, Généralisation de la théorie des fractions continues. Ann. Sci. Éc. Norm. Sup. (3) 13, 41–60 (1896) MathSciNetzbMATHGoogle Scholar
- 140.H. Minkowski, Gesammelte Abhandlungen (Am. Math. Soc., Chelsea, 1967), pp. 293–315 Google Scholar
- 143.V.V. Nikulin, On the classification of arithmetic groups generated by reflections in Lobachevskiĭ spaces. Izv. Akad. Nauk SSSR, Ser. Mat. 45(1), 113–142 (1981) MathSciNetGoogle Scholar
- 144.V.V. Nikulin, On the classification of arithmetic groups generated by reflections in Lobachevskiĭ spaces. Izv. Akad. Nauk SSSR, Ser. Mat. 45(1), 240 (1981) MathSciNetGoogle Scholar
- 145.V.V. Nikulin, Quotient-groups of groups of automorphisms of hyperbolic forms by subgroups generated by 2-reflections. Algebro-geometric applications, in Current Problems in Mathematics, vol. 18 (Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1981), pp. 3–114 Google Scholar
- 146.V.V. Nikulin, Discrete reflection groups in Lobachevsky spaces and algebraic surfaces, in Proceedings of the International Congress of Mathematicians, Berkeley, CA, 1986, vol. 1 (Am. Math. Soc., Providence, 1987), pp. 654–671 Google Scholar
- 147.V.V. Nikulin, Finiteness of the number of arithmetic groups generated by reflections in Lobachevskiĭ spaces. Izv. Math. 71(1), 53–56 (2007). Russian version: Izv. Ross. Akad. Nauk, Ser. Mat. 71(1), 55–60 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
- 148.S. Northshield, Stern’s diatomic sequence 0,1,1,2,1,3,2,3,1,4,… . Am. Math. Mon. 117(7), 581–598 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
- 151.K.M. O’Hara, Structure and Complexity of the Involution Principle for Partitions (ProQuest LLC, Ann Arbor, 1984). Ph.D. thesis, University of California, Berkeley Google Scholar
- 152.K.M. O’Hara, Bijections for partition identities. J. Comb. Theory, Ser. A 49(1), 13–25 (1988) MathSciNetzbMATHCrossRefGoogle Scholar
- 155.I. Pak, Partition identities and geometric bijections. Proc. Am. Math. Soc. 132(12), 3457–3462 (2004) (electronic) zbMATHCrossRefGoogle Scholar
- 156.I. Pak, Partition bijections, a survey. Ramanujan J. 12(1), 5–75 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
- 157.I. Pak, A. Postnikov, V. Retakh, Noncommutative Lagrange theorem and inversion polynomials. Preprint (1995). www.math.ucla.edu/~pak/papers
- 158.G. Panti, Multidimensional continued fractions and a Minkowski function. Monatshefte Math. 154(3), 247–264 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
- 164.O. Perron, Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus. Math. Ann. 64(1), 1–76 (1907) MathSciNetzbMATHCrossRefGoogle Scholar
- 165.O. Perron, Erweiterung eines Markoffschen Satzes über die Konvergenz gewisser Kettenbrüche. Math. Ann. 74(4), 545–554 (1913) MathSciNetzbMATHCrossRefGoogle Scholar
- 170.M. Prasolov, M. Skopenkov, Tiling by rectangles and alternating current. J. Comb. Theory, Ser. A 118(3), 920–937 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
- 172.D. Rosen, A class of continued fractions associated with certain properly discontinuous groups. Duke Math. J. 21, 549–563 (1954) MathSciNetzbMATHCrossRefGoogle Scholar
- 173.A.A. Ruban, Certain metric properties of the p-adic numbers. Sib. Mat. Zh. 11, 222–227 (1970) MathSciNetzbMATHCrossRefGoogle Scholar
- 174.A.L. Schmidt, Ergodic theory of complex continued fractions, in Number Theory with an Emphasis on the Markoff Spectrum, Provo, UT, 1991. Lecture Notes in Pure and Appl. Math., vol. 147 (Dekker, New York, 1993), pp. 215–226 Google Scholar
- 175.H. Schubert, Knoten mit zwei Brücken. Math. Z. 65, 133–170 (1956) MathSciNetzbMATHCrossRefGoogle Scholar
- 176.F. Schweiger, The Metrical Theory of Jacobi-Perron Algorithm. Lecture Notes in Mathematics, vol. 334 (Springer, Berlin, 1973) zbMATHGoogle Scholar
- 177.F. Schweiger, Ergodic properties of multi-dimensional subtractive algorithms, in New Trends in Probability and Statistics, Palanga, 1991, vol. 2 (VSP, Utrecht, 1992), pp. 91–100 Google Scholar
- 178.F. Schweiger, Invariant measures for fully subtractive algorithms. Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 131, 25–30 (1995) MathSciNetGoogle Scholar
- 179.F. Schweiger, Fully subtractive algorithms. Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 204, 23–32 (1996) MathSciNetGoogle Scholar
- 180.F. Schweiger, Multidimensional Continued Fractions. Oxford Science Publications (Oxford University Press, Oxford, 2000) zbMATHGoogle Scholar
- 181.F. Schweiger, Multidimensional continued fractions—new results and old problems. Preprint (2008). http://www.cirm.univ-mrs.fr/videos/2008/exposes/287w2/Schweiger.pdf
- 182.H. Seifert, W. Threlfall, Seifert and Threlfall: A Textbook of Topology. Pure and Applied Mathematics, vol. 89 (Academic Press, New York, 1980). Translated from the German edition of 1934 by Michael A. Goldman, with a preface by Joan S. Birman, with “Topology of 3-dimensional fibered spaces” by Seifert, translated from the German by Wolfgang Heil zbMATHGoogle Scholar
- 183.E.S. Selmer, Continued fractions in several dimensions. Nord. Mat. Tidskr. 9, 37–43 (1961) MathSciNetzbMATHGoogle Scholar
- 184.E.S. Selmer, Continued fractions in several dimensions. Nord. Mat. Tidskr. 9, 95 (1961) MathSciNetGoogle Scholar
- 186.V.I. Shmoĭlov, Nepreryvnye Drobi. Tom I. Periodicheskie Nepreryvnye Drobi (Merkator, Lviv, 2004) Google Scholar
- 187.V.I. Shmoĭlov, Nepreryvnye Drobi. Tom II. Raskhodyashchiesya Nepreryvnye Drobi (Merkator, Lviv, 2004) Google Scholar
- 188.V.I. Shmoĭlov, Nepreryvnye Drobi. Tom III. Iz Istorii Nepreryvnykh Drobei (Merkator, Lviv, 2004) Google Scholar
- 189.V.Ya. Skorobogatko, Ideas and results of the theory of branching continued fractions and their application to the solution of differential equations, in General Theory of Boundary Value Problems (Naukova Dumka, Kiev, 1983), pp. 187–197 Google Scholar
- 190.V.Ya. Skorobogatko, Teoriya Vetvyashchikhsya Tsepnykh Drobei i Ee Primenenie v Vychislitelnoi Matematike (Nauka, Moscow, 1983) Google Scholar
- 195.G. Szekeres, Multidimensional continued fractions. Ann. Univ. Sci. Bp. Rolando Eötvös Nomin., Sect. Math. 13, 113–140 (1970) MathSciNetGoogle Scholar
- 197.R.F. Tichy, J. Uitz, An extension of Minkowski’s singular function. Appl. Math. Lett. 8(5), 39–46 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
- 201.A.V. Ustinov, Minimal vector systems in 3-dimensional lattices and analog of Vahlen’s theorem for 3-dimensional Minkowski’s continued fractions. Sovrem. Probl. Mat. 16, 103–128 (2012) CrossRefGoogle Scholar
- 203.P. Viader, J. Paradís, L. Bibiloni, A new light on Minkowski’s ?(x) function. J. Number Theory 73(2), 212–227 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
- 204.G. Voronoĭ, A generalization of the algorithm of continued fractions. Ph.D. thesis, Warsaw, 1896 (in Russian) Google Scholar
- 205.G.F. Voronoĭ, On a Generalization of the Algorithm of Continued Fraction. Collected Works in Three Volumes (USSR Ac. Sci, Kiev, 1952) (in Russian) Google Scholar
- 210.C. Yannopoulos, Zur Kettenbruchtheorie im Dreidimensionalen. Math. Z. 47, 105–110 (1940) MathSciNetCrossRefGoogle Scholar