Skip to main content

Gauss Reduction in Higher Dimensions

  • Chapter
Book cover Geometry of Continued Fractions

Part of the book series: Algorithms and Computation in Mathematics ((AACIM,volume 26))

  • 2775 Accesses

Abstract

In this chapter we continue to study integer conjugacy classes of integer matrices in general dimension. Namely we are aiming to contribute to the following problem: describe the set of integer conjugacy classes in \(\operatorname{SL}(n,{\mathbb{Z}})\). Gauss‘s reduction theory gives a complete geometric description of conjugacy classes for the case n=2, as we have already discussed in Chap. 7. In the multidimensional case the situation is more complicated. It is relatively simple to check whether two given matrices are integer conjugate, but to distinguish conjugacy classes is a much harder task. Using multidimensional Gauss’s reduction theory, we give the solution to this problem for matrices whose characteristic polynomials are irreducible over the field of rational numbers. We study questions related to the three-dimensional case in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Appelgate, H. Onishi, The similarity problem for 3×3 integer matrices. Linear Algebra Appl. 42, 159–174 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. K. Briggs, Klein polyhedra. http://keithbriggs.info/klein-polyhedra.html

  3. A.D. Bryuno, V.I. Parusnikov, Klein polyhedra for two Davenport cubic forms. Math. Notes - Ross. Akad. 56(3–4), 994–1007 (1995). Russian version: Mat. Zametki 56(4), 9–27 (1994)

    MathSciNet  Google Scholar 

  4. J. Buchmann, A generalization of Voronoĭ’s unit algorithm. I. J. Number Theory 20(2), 177–191 (1985)

    Article  MathSciNet  Google Scholar 

  5. J. Buchmann, A generalization of Voronoĭ’s unit algorithm. II. J. Number Theory 20(2), 192–209 (1985)

    Article  MathSciNet  Google Scholar 

  6. H. Davenport, On the product of three homogeneous linear forms. I. Proc. Lond. Math. Soc. 13, 139–145 (1938)

    Google Scholar 

  7. H. Davenport, On the product of three homogeneous linear forms. II. Proc. Lond. Math. Soc. (2) 44, 412–431 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Davenport, On the product of three homogeneous linear forms. III. Proc. Lond. Math. Soc. (2) 45, 98–125 (1939)

    Article  MathSciNet  Google Scholar 

  9. H. Davenport, Note on the product of three homogeneous linear forms. J. Lond. Math. Soc. 16, 98–101 (1941)

    Article  MathSciNet  Google Scholar 

  10. H. Davenport, On the product of three homogeneous linear forms. IV. Proc. Camb. Philos. Soc. 39, 1–21 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  11. J.W. Demmel, Applied Numerical Linear Algebra (Society for Industrial and Applied Mathematics, Philadelphia, 1997)

    Book  MATH  Google Scholar 

  12. F.J. Grunewald, Solution of the conjugacy problem in certain arithmetic groups, in Word Problems II, Oxford, 1976. Stud. Logic Foundations Math., vol. 95 (North-Holland, Amsterdam, 1980), pp. 101–139

    Chapter  Google Scholar 

  13. K. Hessenberg, Thesis, Technische Hochschule, Darmstadt, Germany, 1942

    Google Scholar 

  14. O. Karpenkov, On the triangulations of tori associated with two-dimensional continued fractions of cubic irrationalities. Funct. Anal. Appl. 38(2), 102–110 (2004). Russian version: Funkc. Anal. Prilozh. 38(2), 28–37 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. O. Karpenkov, On two-dimensional continued fractions of hyperbolic integer matrices with small norm. Russ. Math. Surv. 59(5), 959–960 (2004). Russian version: Usp. Mat. Nauk 59(5), 149–150 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. O. Karpenkov, Three examples of three-dimensional continued fractions in the sense of Klein. C. R. Math. Acad. Sci. Paris 343(1), 5–7 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. O. Karpenkov, Constructing multidimensional periodic continued fractions in the sense of Klein. Math. Comput. 78(267), 1687–1711 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. O. Karpenkov, Multidimensional Gauss reduction theory for conjugacy classes of SL(n,Z). Preprint (2012)

    Google Scholar 

  19. E.I. Korkina, Two-dimensional continued fractions. The simplest examples. Tr. Mat. Inst. Steklova 209, 143–166 (1995)

    MathSciNet  Google Scholar 

  20. E.I. Korkina, The simplest 2-dimensional continued fraction. J. Math. Sci. 82(5), 3680–3685 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Lachaud, Polyèdre d’Arnol’d et voile d’un cône simplicial: analogues du théorème de Lagrange. C. R. Acad. Sci., Sér. 1 Math. 317(8), 711–716 (1993)

    MathSciNet  MATH  Google Scholar 

  22. G. Lachaud, Voiles et Polyhedres de Klein (Act. Sci. Ind., Hermann, 2002)

    Google Scholar 

  23. A. Markoff, Sur les formes quadratiques binaires indéfinies. Math. Ann. 15(3–4), 381–406 (1879)

    Article  MATH  Google Scholar 

  24. J.-O. Moussafir, Voiles et Polyédres de Klein: Geometrie, Algorithmes et Statistiques. Docteur en sciences thèse, Université Paris IX—Dauphine, 2000

    Google Scholar 

  25. R. Okazaki, On an effective determination of a Shintani’s decomposition of the cone \(\mathbf{R}^{n}_{+}\). J. Math. Kyoto Univ. 33(4), 1057–1070 (1993)

    MathSciNet  MATH  Google Scholar 

  26. J.M. Ortega, H.F. Kaiser, The LL T and QR methods for symmetric tridiagonal matrices. Comput. J. 6, 99–101 (1963/1964)

    Article  MathSciNet  Google Scholar 

  27. V.I. Parusnikov, Klein’s polyhedra for the seventh extremal cubic form. Technical report, preprint 79, Keldysh Institute of the RAS, Moscow (1999)

    Google Scholar 

  28. V.I. Parusnikov, Klein polyhedra for the fourth extremal cubic form. Math. Notes - Ross. Akad. 67(1–2), 87–102 (2000). Russian version: Mat. Zametki 67(1), 110–128 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. V.I. Parusnikov, Klein polyhedra for three extremal cubic forms. Math. Notes - Ross. Akad. 77(4), 566–583 (2005). Russian version: Mat. Zametki 77(3–4), 523–538 (2000)

    MathSciNet  Google Scholar 

  30. T. Shintani, On evaluation of zeta functions of totally real algebraic number fields at non-positive integers. J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math. 23(2), 393–417 (1976)

    MathSciNet  MATH  Google Scholar 

  31. J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, 3rd edn. Texts in Applied Mathematics, vol. 12 (Springer, New York, 2002). Translated from the German by R. Bartels, W. Gautschi and C. Witzgall

    MATH  Google Scholar 

  32. L.N. Trefethen, D. Bau, Numerical Linear Algebra (Society for Industrial and Applied Mathematics, Philadelphia, 1997)

    Book  MATH  Google Scholar 

  33. G.F. Voronoĭ, On a Generalization of the Algorithm of Continued Fraction. Collected Works in Three Volumes (USSR Ac. Sci, Kiev, 1952) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Karpenkov, O. (2013). Gauss Reduction in Higher Dimensions. In: Geometry of Continued Fractions. Algorithms and Computation in Mathematics, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39368-6_21

Download citation

Publish with us

Policies and ethics