Geometry of Continued Fractions pp 301-346 | Cite as
Gauss Reduction in Higher Dimensions
- 2.2k Downloads
Abstract
In this chapter we continue to study integer conjugacy classes of integer matrices in general dimension. Namely we are aiming to contribute to the following problem: describe the set of integer conjugacy classes in \(\operatorname{SL}(n,{\mathbb{Z}})\). Gauss‘s reduction theory gives a complete geometric description of conjugacy classes for the case n=2, as we have already discussed in Chap. 7. In the multidimensional case the situation is more complicated. It is relatively simple to check whether two given matrices are integer conjugate, but to distinguish conjugacy classes is a much harder task. Using multidimensional Gauss’s reduction theory, we give the solution to this problem for matrices whose characteristic polynomials are irreducible over the field of rational numbers. We study questions related to the three-dimensional case in more detail.
Keywords
Conjugacy Class Characteristic Polynomial Fundamental Domain Real Eigenvalue Diophantine EquationReferences
- 4.H. Appelgate, H. Onishi, The similarity problem for 3×3 integer matrices. Linear Algebra Appl. 42, 159–174 (1982) MathSciNetzbMATHCrossRefGoogle Scholar
- 25.K. Briggs, Klein polyhedra. http://keithbriggs.info/klein-polyhedra.html
- 27.A.D. Bryuno, V.I. Parusnikov, Klein polyhedra for two Davenport cubic forms. Math. Notes - Ross. Akad. 56(3–4), 994–1007 (1995). Russian version: Mat. Zametki 56(4), 9–27 (1994) MathSciNetGoogle Scholar
- 28.J. Buchmann, A generalization of Voronoĭ’s unit algorithm. I. J. Number Theory 20(2), 177–191 (1985) MathSciNetCrossRefGoogle Scholar
- 29.J. Buchmann, A generalization of Voronoĭ’s unit algorithm. II. J. Number Theory 20(2), 192–209 (1985) MathSciNetCrossRefGoogle Scholar
- 46.H. Davenport, On the product of three homogeneous linear forms. I. Proc. Lond. Math. Soc. 13, 139–145 (1938) Google Scholar
- 47.H. Davenport, On the product of three homogeneous linear forms. II. Proc. Lond. Math. Soc. (2) 44, 412–431 (1938) MathSciNetzbMATHCrossRefGoogle Scholar
- 48.H. Davenport, On the product of three homogeneous linear forms. III. Proc. Lond. Math. Soc. (2) 45, 98–125 (1939) MathSciNetCrossRefGoogle Scholar
- 49.H. Davenport, Note on the product of three homogeneous linear forms. J. Lond. Math. Soc. 16, 98–101 (1941) MathSciNetCrossRefGoogle Scholar
- 50.H. Davenport, On the product of three homogeneous linear forms. IV. Proc. Camb. Philos. Soc. 39, 1–21 (1943) MathSciNetzbMATHCrossRefGoogle Scholar
- 53.J.W. Demmel, Applied Numerical Linear Algebra (Society for Industrial and Applied Mathematics, Philadelphia, 1997) zbMATHCrossRefGoogle Scholar
- 73.F.J. Grunewald, Solution of the conjugacy problem in certain arithmetic groups, in Word Problems II, Oxford, 1976. Stud. Logic Foundations Math., vol. 95 (North-Holland, Amsterdam, 1980), pp. 101–139 CrossRefGoogle Scholar
- 78.K. Hessenberg, Thesis, Technische Hochschule, Darmstadt, Germany, 1942 Google Scholar
- 89.O. Karpenkov, On the triangulations of tori associated with two-dimensional continued fractions of cubic irrationalities. Funct. Anal. Appl. 38(2), 102–110 (2004). Russian version: Funkc. Anal. Prilozh. 38(2), 28–37 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
- 90.O. Karpenkov, On two-dimensional continued fractions of hyperbolic integer matrices with small norm. Russ. Math. Surv. 59(5), 959–960 (2004). Russian version: Usp. Mat. Nauk 59(5), 149–150 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
- 92.O. Karpenkov, Three examples of three-dimensional continued fractions in the sense of Klein. C. R. Math. Acad. Sci. Paris 343(1), 5–7 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
- 95.O. Karpenkov, Constructing multidimensional periodic continued fractions in the sense of Klein. Math. Comput. 78(267), 1687–1711 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
- 99.O. Karpenkov, Multidimensional Gauss reduction theory for conjugacy classes of SL(n,Z). Preprint (2012) Google Scholar
- 118.E.I. Korkina, Two-dimensional continued fractions. The simplest examples. Tr. Mat. Inst. Steklova 209, 143–166 (1995) MathSciNetGoogle Scholar
- 119.E.I. Korkina, The simplest 2-dimensional continued fraction. J. Math. Sci. 82(5), 3680–3685 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
- 123.G. Lachaud, Polyèdre d’Arnol’d et voile d’un cône simplicial: analogues du théorème de Lagrange. C. R. Acad. Sci., Sér. 1 Math. 317(8), 711–716 (1993) MathSciNetzbMATHGoogle Scholar
- 125.G. Lachaud, Voiles et Polyhedres de Klein (Act. Sci. Ind., Hermann, 2002) Google Scholar
- 135.A. Markoff, Sur les formes quadratiques binaires indéfinies. Math. Ann. 15(3–4), 381–406 (1879) zbMATHCrossRefGoogle Scholar
- 142.J.-O. Moussafir, Voiles et Polyédres de Klein: Geometrie, Algorithmes et Statistiques. Docteur en sciences thèse, Université Paris IX—Dauphine, 2000 Google Scholar
- 153.R. Okazaki, On an effective determination of a Shintani’s decomposition of the cone \(\mathbf{R}^{n}_{+}\). J. Math. Kyoto Univ. 33(4), 1057–1070 (1993) MathSciNetzbMATHGoogle Scholar
- 154.J.M. Ortega, H.F. Kaiser, The LL T and QR methods for symmetric tridiagonal matrices. Comput. J. 6, 99–101 (1963/1964) MathSciNetCrossRefGoogle Scholar
- 161.V.I. Parusnikov, Klein’s polyhedra for the seventh extremal cubic form. Technical report, preprint 79, Keldysh Institute of the RAS, Moscow (1999) Google Scholar
- 162.V.I. Parusnikov, Klein polyhedra for the fourth extremal cubic form. Math. Notes - Ross. Akad. 67(1–2), 87–102 (2000). Russian version: Mat. Zametki 67(1), 110–128 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
- 163.V.I. Parusnikov, Klein polyhedra for three extremal cubic forms. Math. Notes - Ross. Akad. 77(4), 566–583 (2005). Russian version: Mat. Zametki 77(3–4), 523–538 (2000) MathSciNetGoogle Scholar
- 185.T. Shintani, On evaluation of zeta functions of totally real algebraic number fields at non-positive integers. J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math. 23(2), 393–417 (1976) MathSciNetzbMATHGoogle Scholar
- 193.J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, 3rd edn. Texts in Applied Mathematics, vol. 12 (Springer, New York, 2002). Translated from the German by R. Bartels, W. Gautschi and C. Witzgall zbMATHGoogle Scholar
- 198.L.N. Trefethen, D. Bau, Numerical Linear Algebra (Society for Industrial and Applied Mathematics, Philadelphia, 1997) zbMATHCrossRefGoogle Scholar
- 205.G.F. Voronoĭ, On a Generalization of the Algorithm of Continued Fraction. Collected Works in Three Volumes (USSR Ac. Sci, Kiev, 1952) (in Russian) Google Scholar