Advertisement

Multidimensional Continued Fractions in the Sense of Klein

  • Oleg Karpenkov
Chapter
  • 2.2k Downloads
Part of the Algorithms and Computation in Mathematics book series (AACIM, volume 26)

Abstract

In 1839, C. Hermite posed the problem of generalizing ordinary continued fractions to the higher-dimensional case. Since then, there have been many different definitions generalizing different properties of ordinary continued fractions. In this book we focus on the geometric generalization proposed by F. Klein. We start this chapter with an introduction of general notions and definitions. Further we consider the case of finite continued fractions in more details. As an additional tool we will use multidimensional Kronecker’s approximation theory, which we formulate and prove it in this chapter. After that we discuss homeomorphic and polyhedral structure of the sails in general. Finally we classify all two-dimensional faces with integer distance to the origin greater then one and say a few words about the two-dimensional faces with integer distance to the origin equals one.

Keywords

General Position Continue Fraction Integer Point Simplicial Cone Polyhedral Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 7.
    V.I. Arnold, A-graded algebras and continued fractions. Commun. Pure Appl. Math. 42(7), 993–1000 (1989) zbMATHCrossRefGoogle Scholar
  2. 9.
    V.I. Arnold, Higher-dimensional continued fractions. Regul. Chaotic Dyn. 3(3), 10–17 (1998). J. Moser at 70 (in Russian) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 10.
    V.I. Arnold, Preface, in Pseudoperiodic Topology. Am. Math. Soc. Transl. Ser. 2, vol. 197 (Am. Math. Soc., Providence, 1999), pp. ix–xii Google Scholar
  4. 11.
    V.I. Arnold, Continued Fractions (Moscow Center of Continuous Mathematical Education, Moscow, 2002) (in Russian) Google Scholar
  5. 67.
    O.N. German, Sails and Hilbert bases. Proc. Steklov Inst. Math. 239(4), 88–95 (2002). Russian version: Tr. Mat. Inst. Steklova 239(4), 98–105 (2002) MathSciNetGoogle Scholar
  6. 77.
    C. Hermite, Letter to C. D. J. Jacobi. J. Reine Angew. Math. 40, 286 (1839) Google Scholar
  7. 93.
    O. Karpenkov, On an invariant Möbius measure and the Gauss-Kuz’min face distribution. Proc. Steklov Inst. Math. 258, 74–86 (2007). Russian version: Tr. Mat. Inst. Steklova 258, 79–92 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 101.
    O.N. Karpenkov, A.M. Vershik, Rational approximation of maximal commutative subgroups of \(\operatorname{GL}(n,\Bbb{R})\). J. Fixed Point Theory Appl. 7(1), 241–263 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 107.
    V. Klee, Some characterizations of convex polyhedra. Acta Math. 102, 79–107 (1959) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 108.
    F. Klein, Ueber eine geometrische Auffassung der gewöhnliche Kettenbruchentwicklung. Nachr. Ges. Wiss. Göttingen Math-Phys. Kl. 3, 352–357 (1895) Google Scholar
  11. 109.
    F. Klein, Sur une représentation géométrique de développement en fraction continue ordinaire. Nouv. Ann. Math. 15(3), 327–331 (1896) Google Scholar
  12. 113.
    M.L. Kontsevich, Yu.M. Suhov, Statistics of Klein polyhedra and multidimensional continued fractions, in Pseudoperiodic Topology. Am. Math. Soc. Transl. Ser. 2, vol. 197 (Am. Math. Soc., Providence, 1999), pp. 9–27 Google Scholar
  13. 116.
    E. Korkina, La périodicité des fractions continues multidimensionnelles. C. R. Acad. Sci., Sér. 1 Math. 319(8), 777–780 (1994) MathSciNetzbMATHGoogle Scholar
  14. 123.
    G. Lachaud, Polyèdre d’Arnol’d et voile d’un cône simplicial: analogues du théorème de Lagrange. C. R. Acad. Sci., Sér. 1 Math. 317(8), 711–716 (1993) MathSciNetzbMATHGoogle Scholar
  15. 125.
    G. Lachaud, Voiles et Polyhedres de Klein (Act. Sci. Ind., Hermann, 2002) Google Scholar
  16. 141.
    J.-O. Moussafir, Sails and Hilbert bases. Funct. Anal. Appl. 34(2), 114–118 (2000). Russian version: Funkc. Anal. Prilozh. 34, (2) 2000, 43–49 MathSciNetzbMATHCrossRefGoogle Scholar
  17. 142.
    J.-O. Moussafir, Voiles et Polyédres de Klein: Geometrie, Algorithmes et Statistiques. Docteur en sciences thèse, Université Paris IX—Dauphine, 2000 Google Scholar
  18. 200.
    H. Tsuchihashi, Higher-dimensional analogues of periodic continued fractions and cusp singularities. Tohoku Math. J. 35(4), 607–639 (1983) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Oleg Karpenkov
    • 1
  1. 1.Dept. of Mathematical SciencesUniversity of LiverpoolLiverpoolUK

Personalised recommendations