On Empty Simplices, Pyramids, Parallelepipeds

  • Oleg Karpenkov
Part of the Algorithms and Computation in Mathematics book series (AACIM, volume 26)


An integer polyhedron is called empty if it does not contain integer points other than its vertices. In this chapter we give the classification of empty tetrahedra and the classification of pyramids whose integer points are contained in the base of pyramids in \(\mathbb{R}^{3}\). Later in the book we essentially use the classification of the mentioned pyramids for studying faces of multidimensional continued fractions. In particular, the describing of such pyramids simplifies the deductive algorithm of Chap.  20 in the three-dimensional case. We continue with two open problems related to empty objects in lattices. The first one is a problem of description of empty simplices in dimensions greater than 3. The second is the lonely runner conjecture. We conclude this chapter with a proof of a theorem on the classification of empty tetrahedra.


Integer Point Integer Lattice Left Coset Universal Covering Space Empty Triangle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 13.
    J. Barajas, O. Serra, The lonely runner problem with seven runners, in Fifth Conference on Discrete Mathematics and Computer Science, University of Valladolid. Ciencias (Valladolid), vol. 23 (Secr. Publ. Intercamb. Ed., Valladolid, 2006), pp. 111–116 (in Spanish) Google Scholar
  2. 14.
    J. Barajas, O. Serra, The lonely runner with seven runners. Electron. J. Comb. 15(1), R48 (2008) MathSciNetGoogle Scholar
  3. 16.
    M. Barile, D. Bernardi, A. Borisov, J.-M. Kantor, On empty lattice simplices in dimension 4. Proc. Am. Math. Soc. 139(12), 4247–4253 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 19.
    U. Betke, J.M. Wills, Untere Schranken für zwei diophantische Approximations-Funktionen. Monatshefte Math. 76, 214–217 (1972) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 20.
    W. Bienia, L. Goddyn, P. Gvozdjak, A. Sebő, M. Tarsi, Flows, view obstructions, and the lonely runner. J. Comb. Theory, Ser. B 72(1), 1–9 (1998) zbMATHCrossRefGoogle Scholar
  6. 21.
    T. Bohman, R. Holzman, D. Kleitman, Six lonely runners. Electron. J. Comb. 8(2), R3 (2001). In honor of Aviezri Fraenkel on the occasion of his 70th birthday MathSciNetGoogle Scholar
  7. 37.
    T.W. Cusick, View-obstruction problems. Aequ. Math. 9, 165–170 (1973) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 39.
    T.W. Cusick, View-obstruction problems in n-dimensional geometry. J. Comb. Theory, Ser. A 16, 1–11 (1974) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 40.
    T.W. Cusick, View-obstruction problems. II. Proc. Am. Math. Soc. 84(1), 25–28 (1982) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 42.
    T.W. Cusick, C. Pomerance, View-obstruction problems. III. J. Number Theory 19(2), 131–139 (1984) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 91.
    O. Karpenkov, Classification of three-dimensional multistoried completely hollow convex marked pyramids. Russ. Math. Surv. 60, 165–166 (2005). Russian version: Usp. Mat. Nauk 60(1), 169–170 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 207.
    G.K. White, Lattice tetrahedra. Can. J. Math. 16, 389–396 (1964) zbMATHCrossRefGoogle Scholar
  13. 208.
    J.M. Wills, Zwei Sätze über inhomogene diophantische Approximation von Irrationalzahlen. Monatshefte Math. 71, 263–269 (1967) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Oleg Karpenkov
    • 1
  1. 1.Dept. of Mathematical SciencesUniversity of LiverpoolLiverpoolUK

Personalised recommendations