Skip to main content

Incorporating Voice Permutations into the Theory of Neo-Riemannian Groups and Lewinian Duality

  • Conference paper
Mathematics and Computation in Music (MCM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7937))

Included in the following conference series:

Abstract

A familiar problem in neo-Riemannian theory is that the P, L, and R operations defined as contextual inversions on pitch-class segments do not produce parsimonious voice leading. We incorporate permutations into T/IPLR duality to resolve this issue and simultaneously broaden the applicability of this duality. More precisely, we construct the dual group to the permutation group acting on n-tuples with distinct entries, and prove that the dual group to permutations adjoined with a group G of invertible affine maps ℤ12 → ℤ12 is the internal direct product of the dual to permutations and the dual to G. Musical examples include Liszt, R. W. Venezia, S. 201 and Schoenberg, String Quartet Number 1, Opus 7. We also prove that the Fiore–Noll construction of the dual group in the finite case works, and clarify the relationship of permutations with the RICH transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fiore, T.M., Noll, T., Satyendra, R.: Morphisms of Generalized Interval Systems and PR-Groups. Journal of Mathematics and Music 7(1) (2013)

    Google Scholar 

  2. Peck, R.: Generalized Commuting Groups. Journal of Music Theory 54(2), 143–177 (2010)

    Article  Google Scholar 

  3. Hook, J., Douthett, J.: Uniform Triadic Transformations and the Twelve-Tone Music of Webern. Perspectives of New Music 46(1), 91–151 (2008)

    Google Scholar 

  4. Engebretsen, N.: The “Over-Determined” Triad as a Source of Discord: Nascent Groups and the Emergent Chromatic Tonality in Nineteenth-Century German Harmonic Theory. In: Douthett, J., Hyde, M.M., Smith, C.J. (eds.) Music Theory and Mathematics: Chords, Collections, and Transformations. Eastman Studies in Music, vol. 50, pp. 107–136. University of Rochester Press (2008)

    Google Scholar 

  5. Callender, C., Quinn, I., Tymoczko, D.: Generalized Voice-Leading Spaces. Science 320(5874), 346–348 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fiore, T.M., Satyendra, R.: Generalized Contextual Groups. Music Theory Online 11(3) (2005)

    Google Scholar 

  7. Kochavi, J.: Some Structural Features of Contextually-Defined Inversion Operators. Journal of Music Theory 42(2), 307–320 (1998)

    Article  Google Scholar 

  8. Lewin, D.: Generalized Musical Intervals and Transformations. Yale University Press, New Haven (1987)

    Google Scholar 

  9. Crans, A.S., Fiore, T.M., Satyendra, R.: Musical Actions of Dihedral Groups. Amer. Math. Monthly 116(6), 479–495 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Childs, A.: Moving Beyond Neo-Riemannian Triads: Exploring a Transformational Model for Seventh Chords. Journal of Music Theory 42(2), 191–193 (1998)

    Article  MathSciNet  Google Scholar 

  11. Gollin, E.: Some Aspects of Three-Dimensional Tonnetze. Journal of Music Theory 42(2), 195–206 (1998)

    Article  Google Scholar 

  12. Fiore, T.M., Noll, T.: Commuting Groups and the Topos of Triads. In: Agon, C., Andreatta, M., Assayag, G., Amiot, E., Bresson, J., Mandereau, J. (eds.) MCM 2011. LNCS, vol. 6726, pp. 69–83. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Herstein, I.N.: Abstract Algebra, 3rd edn. Prentice Hall Inc., Upper Saddle River (1996); With a preface by Cortzen, B. and Winter, D.J.

    Google Scholar 

  14. Dummit, D.S., Foote, R.M.: Abstract Algebra, 3rd edn. John Wiley & Sons Inc., Hoboken (2004)

    MATH  Google Scholar 

  15. Mazzola, G.: Gruppen und Kategorien in der Musik: Entwurf einer mathematischen Musiktheorie. Research and Exposition in Mathematics, vol. 10. Heldermann Verlag, Berlin (1985)

    MATH  Google Scholar 

  16. Straus, J.N.: Contextual-Inversion Spaces. Journal of Music Theory 55(1), 43–88 (2011)

    Article  Google Scholar 

  17. Catanzaro, M.: Generalized Tonnetze. Journal of Mathematics and Music 5(2), 117–139 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Clough, J.: Flip-Flop Circles and Their Groups. In: Douthett, J., Hyde, M.M., Smith, C.J. (eds.) Music Theory and Mathematics: Chords, Collections, and Transformations. Eastman Studies in Music, vol. 50. University of Rochester Press (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fiore, T.M., Noll, T., Satyendra, R. (2013). Incorporating Voice Permutations into the Theory of Neo-Riemannian Groups and Lewinian Duality. In: Yust, J., Wild, J., Burgoyne, J.A. (eds) Mathematics and Computation in Music. MCM 2013. Lecture Notes in Computer Science(), vol 7937. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39357-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39357-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39356-3

  • Online ISBN: 978-3-642-39357-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics