Skip to main content

Using Formal Concept Analysisto Represent Chroma Systems

  • Conference paper
Mathematics and Computation in Music (MCM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7937))

Included in the following conference series:

Abstract

The article discusses the application of Formal Concept Analysis to the algebraic enumeration, classification and representation of musical structures. It focuses on the music-theoretical notion of the Tone System and its equivalent classes obtained either via an action of a given finite group on the collection of subsets of it or via an identification of Forte’s corresponding interval vector and Lewin’s interval function. The use of concept lattices, applied to a simple case such as the division of the octave into five equal parts and the associated Chroma System, clearly shows that these approaches are conceptually different. The same result is obtained for a given subsystem of the traditional Tone System, as we will show by analysing the case of the pentatonic system. This opens a window towards generic tone systems that can be used as starting point for the structural analysis of other finite chroma systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wille, R.: Restructuring lattice theory: An approach based on hierarchies of concepts. In: Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS, vol. 5548, pp. 314–339. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Wille, R.: Restructuring lattice theory: An approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets. NATO, Advanced Study Institutes Series, vol. 83, pp. 445–470. Springer, Netherlands (1982)

    Chapter  Google Scholar 

  3. Barbut, M., Frey, L.: Techniques ordinales en analyse des donnés. Volume tome I, In. Algébre et Combinatoire of Méthodes Mathématiques des Sciences de l’Homme. Hachette Université (1971)

    Google Scholar 

  4. Wille, R.: Sur la fusion des contextes individuels. Revue de Mathématiques et Sciences Humaines 85, 57–71 (1984)

    MathSciNet  MATH  Google Scholar 

  5. Wille, R.: Musiktheorie und Mathematik. In: Götze, H., Wille, R. (eds.) Musik und Mathematik: Salzburger Musikgespräch 1984 unter Vorsitz von Herbert von Karajan, pp. 4–31. Springer, Berlin (1985)

    Google Scholar 

  6. Noll, T., Brand, M.: Morphology of Chords, pp. 366–398. Electronic Publ., Osnabrück (2004)

    Google Scholar 

  7. Neumaier, W., Wille, R.: Extensionale Standardsprache der Musiktheorie : eine Schnittstelle zwischen Musik und Informatik. Preprint 1141,In. Fachbereich Mathemetik. Technische Hochschule Darmstadt, Darmstadt (1988)

    Google Scholar 

  8. Mutabor team: Mutabor – the dynamic tempered piano. Website (2012), http://www.math.tu-dresden.de/~mutabor/ (Archived by WebCite® at http://www.webcitation.org/6ASACEUxB ) (accessed: September 05, 2012)

  9. Ganter, B., Wille, R.: Formal concept analysis: Mathematical foundations. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  10. Wille, R.: Mathematische Sprache in der Musiktheorie. In: Fuchssteiner, B., Kulisch, U., Laugwitz, D., Liedl, R. (eds.) Jahrbuch Überblicke Mathematik 1980, pp. 167–184. Bibliographisches Institut, Mannheim (1980)

    Google Scholar 

  11. Neumaier, W.: Was ist ein Tonsystem?: Eine historisch-systematische Theorie der abendländischen Tonsysteme, gegründet auf die antiken Theoretiker Aristoxenos, Eukleides und Ptolemaios, dargestellt mit Mitteln der modernen Algebra. Quellen und Studien zur Musikgeschichte von der Antike bis in die Gegenwart, vol. 9. Lang, Frankfurt am Main (1986)

    Google Scholar 

  12. Neumaier, W., Wille, R.: Extensionale Standardsprache der Musiktheorie – eine Schnittstelle zwischen Musik und Informatik. In: Hesse, H.P. (ed.) Mikrotöne III: Bericht über das 3. internationale Symposium Mikrotonforschung, Musik mit Mikrotönen, Ekmelische Musik, Salzburg, April 28-30. Veröffentlichungen der Gesellschaft für Ekmelische Musik., Innsbruck, Ed. Helbling, vol. 6, pp. 149–167.

    Google Scholar 

  13. Winkler, J.T.: Algebraische Modellierung von Tonsystemen. Beiträge zur begrifflichen Wissensverarbeitung. Verl. Allg. Wiss. – HRW e.K., Mühltal (2009)

    Google Scholar 

  14. Schlemmer, T., Schmidt, S.: A formal concept analysis of harmonic forms and interval structures. Annals of Mathematics and Artificial Intelligence 59(2), 241–256 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tymoczko, D.: Generalizing musical intervals. Journal of Music Theory 53(2), 227–254 (2009)

    Article  Google Scholar 

  16. Mazzola, G., Göller, S., Müller, S.: The Topos of Music: geometric logic of concepts, theory, and performance. Birkhäuser, Basel (2002)

    Google Scholar 

  17. Lewin, D.: Generalized Musical Intervals and Transformations. Oxford University Press, New York (2007)

    Book  Google Scholar 

  18. Noll, T.: Sturmian sequences and morphisms – a music-theoretical application. Mathématique et Musique, Journée Annuelle de la Société Mathématique de France, 79–102 (2008)

    Google Scholar 

  19. Forte, A.: The structure of atonal music, 1st edn. Yale Univ. Press, New Haven (1973)

    Google Scholar 

  20. MacNeille, H.M.: Partially ordered sets. Trans. Amer. Math. Soc. 42(3), 416–460 (1937)

    Article  MathSciNet  Google Scholar 

  21. Lewin, D.: Forte’s interval vector, my interval function, and regener’s common-note function. Journal of Music Theory 21(2), 194–237 (1977)

    Article  Google Scholar 

  22. Reckziegel, W.: Musikanalyse und Wissenschaft. Studia Musicologica Academiae Scientiarum Hungaricae 9(1/2), 163–186 (1967)

    Google Scholar 

  23. Estrada, J.: La teoría d1, músiic-win y algunas aplicaciones al análisis musical: Seis piezas para piano, de Arnold Schoenberg. Memoirs of the Fourth International Seminar on Mathematical Music Theory 4, 113–145 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schlemmer, T., Andreatta, M. (2013). Using Formal Concept Analysisto Represent Chroma Systems. In: Yust, J., Wild, J., Burgoyne, J.A. (eds) Mathematics and Computation in Music. MCM 2013. Lecture Notes in Computer Science(), vol 7937. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39357-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39357-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39356-3

  • Online ISBN: 978-3-642-39357-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics