Skip to main content

Condition Monitoring Under Non-Stationary Operating Conditions using Time–Frequency Representation-Based Dynamic Features

  • Conference paper
  • First Online:
Advances in Condition Monitoring of Machinery in Non-Stationary Operations

Abstract

Condition monitoring is useful to describe the machine state under current operating regimes, especially, when non-stationary operating conditions appears. Nevertheless, in actual applications the faulty data are not always available. This paper proposes a novel methodology for condition monitoring using dynamic features and one-class classifiers. The dynamic features set comprises the spectral sub-band centroids and linear frequency cepstral coefficients computed from time–frequency representations. A one-class classification stage is carried out to validate the performance of the dynamic features and commonly used statistical features as descriptors of the machine state. Proposed methodology is evaluated by using a test rig, which is composed by outliers (unbalance and misalignment) and target objects (undamaged state). The data set is obtained under variable speed conditions including start-up and coast-down. The attained results outperform other state-of-the-art extracted parameters and the methodology is robust to large speed fluctuations in the machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fengqi W, Meng G (2006) Compound rub malfunctions feature extraction based on full-spectrum cascade analysis and SVM. Mech Syst Signal Process 20(8):2007

    Article  Google Scholar 

  2. Wu JD, Chen JC (2006) Continuous wavelet transform technique for fault signal diagnosis of internal combustion engines. NDT E Int 39(4):304

    Article  Google Scholar 

  3. Sejdic E, Djurovic I, Jiang J (2009) Time-frequency feature representation using energy concentration: An overview of recent advances. Digit Signal Process 19(1):153

    Article  Google Scholar 

  4. Li C, Liang M (2012) Time-frequency signal analysis for gearbox fault diagnosis using a generalized synchrosqueezing transform. Mech Syst Signal Process 26(0):205. doi:10.1016/j.ymssp.2011.07.001. http://www.sciencedirect.com/science/article/pii/S0888327011002895

  5. Daubechies I, Lu J, Wu HT (2011) Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Appl Comput Harmonic Anal 30(2):243. doi:10.1016/j.acha.2010.08.002. http://www.sciencedirect.com/science/article/pii/S1063520310001016

    Google Scholar 

  6. Cardona-Morales O, Angel-Orozco A, Castellanos-Domínguez G (2010). Damage detection in vibration signals using non parametric time-frequency representations. In: Proceedings of ISMA2010, international conferences on noise and vibration engineering

    Google Scholar 

  7. Honarvar F, Martin H (1997) New statistical moments for diagnostics of rolling element bearings. J Manuf Sci Eng 119(3):425

    Article  Google Scholar 

  8. Lei Y, He Z, Zi Y (2008) A new approach to intelligent fault diagnosis of rotating machinery. Expert Syst Appl 35(4):1593

    Article  Google Scholar 

  9. Villa LF, Reñones A, Perón JR, de Miguel LJ (2012) Statistical fault diagnosis based on vibration analysis for gear test-bench under non-stationary conditions of speed and load. Mech Syst Signal Process 29(0):436. doi:10.1016/j.ymssp.2011.12.013. http://www.sciencedirect.com/science/article/pii/S0888327011005292

  10. Tax DMJ, Duin RPW (2004) Support Vector Data Description. Machine Learning 54(1):45

    Article  MATH  Google Scholar 

  11. Zhang Y, Liu XD, Xie FD, Li KQ (2009) Fault classifier of rotating machinery based on weighted support vector data description. Expert Syst Appl 36(4):7928. doi:10.1016/j.eswa.2008.10.062. http://www.sciencedirect.com/science/article/pii/S0957417408007914

    Google Scholar 

  12. McBain J, Timusk M (2009) Fault detection in variable speed machinery: Statistical parameterization. J Sound Vibr 327(3–5):623. doi:10.1016/j.jsv.2009.07.025. http://www.sciencedirect.com/science/article/pii/S0022460X09005896

    Google Scholar 

  13. Pan Y, Chen J, Li X (2010) Bearing performance degradation assessment based on lifting wavelet packet decomposition and fuzzy c-means. Mech Syst Signal Process 24(2):559. doi:10.1016/j.ymssp.2009.07.012. http://www.sciencedirect.com/science/article/pii/S0888327009002490

    Google Scholar 

  14. McBain J, Timusk M (2011) Feature extraction for novelty detection as applied to fault detection in machinery. Pattern Recog Lett 32(7):1054. doi:10.1016/j.patrec.2011.01.019. http://www.sciencedirect.com/science/article/pii/S0167865511000341

  15. Bartkowiak A, Zimroz R (2011) Outliers analysis and one class classification approach for planetary gearbox diagnosis. J Phys: Conf Ser 305(1):012031

    Google Scholar 

  16. Paliwal K (1997) Spectral subband centroids as features for speech recognition. In: Proceedings of IEEE workshop on Automatic speech recognition and understanding, pp 124–131

    Google Scholar 

  17. Rabiner L, Juang B (1993) Fundamentals of speech recognition. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  18. Khan S, Madden M (2010) in Artificial Intelligence and Cognitive Science, Lecture Notes in Computer Science, vol. 6206, ed. by L. Coyle, J. Freyne (Springer Berlin Heidelberg, 2010), pp. 188–197. doi:10.1007/978-3-642-17080-5_21. http://dx.doi.org/10.1007/978-3-642-17080-5_21

  19. Bishop C (1995) Neural networks for pattern recognition, Oxford University Press, Walton Street, Oxford OX2 6DP

    Google Scholar 

  20. Nelwamondo FV, Marwala T, Mahola U (2006) Early classification of bearing faults using Hidden Markov Models, Gaussian Mixture Models, Mel-Frequency Cepstral Coefficients and Fractals. Inter J of Innov Comp Inf and Cntl 2(6):1281–1299

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Cardona-Morales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cardona-Morales, O., Alvarez-Marin, D., Castellanos-Dominguez, G. (2014). Condition Monitoring Under Non-Stationary Operating Conditions using Time–Frequency Representation-Based Dynamic Features. In: Dalpiaz, G., et al. Advances in Condition Monitoring of Machinery in Non-Stationary Operations. Lecture Notes in Mechanical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39348-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39348-8_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39347-1

  • Online ISBN: 978-3-642-39348-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics