Genomics and Spectroscopy Provide Novel Insights into the Mechanisms of Litter Decomposition and Nitrogen Assimilation by Ectomycorrhizal Fungi

  • Anders TunlidEmail author
  • Francois Rineau
  • Mark Smits
  • Firoz Shah
  • Cesar Nicolas
  • Tomas Johansson
  • Per Persson
  • Francis Martin
Part of the Soil Biology book series (SOILBIOL, volume 36)


The majority of nitrogen in forest soils is found in organic form, primarily as proteins. This nitrogen is mobilized and becomes available to trees as a result of the depolymerizing activities of symbiotic ectomycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matter–protein complexes within which the nitrogen is embedded. In this review, we will describe how a combination of spectroscopic methods and transcriptome analyses has provided novel insights into the mechanisms by which the ectomycorrhizal fungus Paxillus involutus decomposes organic matter when acquiring nitrogen from plant litter. The observed chemical changes were consistent with a hydroxyl-radical attack, involving Fenton chemistry similar to that of saprophytic brown-rot fungi. Unlike the saprophytic fungi, P. involutus did not show any expression of genes encoding extracellular enzymes needed to metabolize the released carbon. We suggest that these activities have been lost in ectomycorrhizal fungi as an adaptation to symbiotic growth on host photosynthate. Indeed experiments have shown that the decomposition of plant litter and assimilation of nitrogen are triggered by the addition of glucose. In contrast, the addition of ammonium, the most abundant inorganic N form in forest soils, had relatively minor effects of the decomposition of litter material by P. involutus. The data suggest that the expression of the decomposition and nitrogen assimilation processes can be tightly regulated by the host carbon supply. Finally, the prospects of using novel spectroscopic methods and transcriptomic data to identify specific transcripts or chemical signatures that can be used as biomarkers for probing the activity of mycorrhizal fungi in the field are discussed.


Soil Organic Matter Arbuscular Mycorrhizal Mycorrhizal Fungus Litter Decomposition Litter Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work has been supported by grants from the Swedish Research Council (VR), the strategic research program Biodiversity and Ecosystem Services in a Changing Climate (BECC) and the Danish Agency for Science and Technology, and the Research Foundation—Flanders (FWO). The genome and transcriptome sequencing of Paxillus involutus was funded by grants from the U.S. Department of Energy.


  1. Abuzinadah RA, Finlay BJ, Read DJ (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. II. Utilizations of proteins by mycorrhizal plants of Pinus contorta. New Phytol 103:495–506CrossRefGoogle Scholar
  2. Agerer R (2001) Exploration types of ectomycorrhizae. A proposal to classify ectomycorrhizal systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114CrossRefGoogle Scholar
  3. Aro N, Pakula T, Penttila M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29:719–739PubMedCrossRefGoogle Scholar
  4. Baldrian P (2009) Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs? Oecologia 161:657–660PubMedCrossRefGoogle Scholar
  5. Bending GD (2003) Litter decomposition, ectomycorrhizal roots and the ‘Gadgil’ effect. New Phytol 158:227–238CrossRefGoogle Scholar
  6. Bending GD, Read DJ (1995) The structure and the function of the vegetative mycelium of ectomycorrhizal plants. VI. Activities of nutrient mobilizing enzymes in birch litter colonized by Paxillus involutus (Fr.) Fr. New Phytol 130:411–417CrossRefGoogle Scholar
  7. Bending GD, Read DJ (1996) Nitrogen mobilization from protein-polyphenol complexes by ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28:1603–1612CrossRefGoogle Scholar
  8. Bengtson P, Barker J, Grayston SJ (2012) Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effects. Ecol Evol 2:1843–1852PubMedCrossRefGoogle Scholar
  9. Benjdia M, Rikirsch E, Muller T, Morel M, Corratge C, Zimmermann SD (2006) Peptide uptake in the ectomycorrhizal fungus Hebeloma cylindrosporum: characterization of two di- and tripeptide transporters (HcPTR2A and B). New Phytol 170:401–410PubMedCrossRefGoogle Scholar
  10. Cairney JWG, Burke RM (1996) Physiological heterogeneity within fungal mycelia: an important concept for a functional understanding of the ectomycorrhizal symbiosis. New Phytol 134:685–695CrossRefGoogle Scholar
  11. Chalot M, Brun A (1998) Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol Rev 22:21–44PubMedCrossRefGoogle Scholar
  12. Chen DM, Bastias BA, Taylor AFS, Cairney JWG (2003) Identification of laccase-like genes in basidiomycetes and transcriptional regulation by nitrogen in Piloderma byssinum. New Phytol 157:547–554CrossRefGoogle Scholar
  13. Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H et al (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618PubMedCrossRefGoogle Scholar
  14. Courty PE, Pritsch K, Schloter M, Hartmann A, Garbaye J (2005) Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytol 167:309–319PubMedCrossRefGoogle Scholar
  15. Courty PE, Bréda N, Garbaye J (2007) Relation between oak tree phenology and the secretion of organic matter degrading enzymes by Lactarius quietus ectomycorrhizas before and during bud break. Soil Biol Biochem 39:1655–1663CrossRefGoogle Scholar
  16. Cullings K, Ishkhanova G, Henson J (2008) Defoliation effects on enzyme activities of the ectomycorrhizal fungus Suillus granulatus in a Pinus contorta (lodgepole pine) stand in Yellowstone National Park. Oecologia 158:77–83PubMedCrossRefGoogle Scholar
  17. De Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811PubMedCrossRefGoogle Scholar
  18. Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A et al (2011) The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science 333:762–765PubMedCrossRefGoogle Scholar
  19. Edwards IP, Zak DR, Kellner H, Eisenlord SD, Pregitzer KS (2011) Simulated atmospheric N deposition alters fungal community composition and suppresses ligninolytic gene expression in a northern hardwood forest. PLoS One 6:e20421PubMedCrossRefGoogle Scholar
  20. Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE et al (2012) Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 109:2666–2671PubMedCrossRefGoogle Scholar
  21. Fenn P, Kirk TK (1981) Relationship of nitrogen to the onset and suppression of ligninolytic activity and secondary metabolism in Phanerochaete chrysosporium. Arch Microbiol 130:59–65CrossRefGoogle Scholar
  22. Frank AB (1894) Die Bedeutung der Mykorrhizapilze für die Gemeine Kiefer. Fortstwissenschaftliche Centralblat 16:1852–1890Google Scholar
  23. Gadgil RL, Gadgil PD (1971) Mycorrhiza and litter decomposition. Nature 233:133PubMedCrossRefGoogle Scholar
  24. Haselwandter K, Bobleter O, Read DJ (1990) Degradation of 14C-labelled lignin and dehydropolymer of coniferyl alcohol by ericoid and ectomycorrhizal fungi. Arch Microbiol 153:352–354CrossRefGoogle Scholar
  25. Hatakka A, Hammel KE (2010) Fungal biodegradation of lignocellulose. In: Hofrichter M (ed) The mycota X. Industrial applications. Springer, BerlinGoogle Scholar
  26. Izumi H, Finlay RD (2011) Ectomycorrhizal roots select distinctive bacterial and ascomycete communities in Swedish subarctic forests. Environ Microbiol 13:819–830PubMedCrossRefGoogle Scholar
  27. Kellner H, Zak DR, Vandenbol M (2010) Fungi unearthed: transcripts encoding lignocellulolytic and chitinolytic enzymes in forest soil. PLoS One 5:e10971PubMedCrossRefGoogle Scholar
  28. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E et al (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882PubMedCrossRefGoogle Scholar
  29. Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD (2011) Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 77:7007–7015PubMedCrossRefGoogle Scholar
  30. Leake JR, Donnelly DP, Saunders EM, Boddy L, Read DJ (2001) Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labeling of Pinus sylvestris seedlings: effects of litter patches and interaction with a wood-decomposer fungus. Tree Physiol 21:71–82PubMedCrossRefGoogle Scholar
  31. Lehmann J, Solomon D, Kinyangi J, Wirick S, Jacobsen C (2008) Spatial complexity of soil organic matter forms at nanometre scales. Nat Geosci 1:238–242CrossRefGoogle Scholar
  32. Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620PubMedCrossRefGoogle Scholar
  33. Lucic E, Fourrey C, Kohler A, Martin F, Chalot M, Brun-Jacob A (2008) A gene repertoire for nitrogen transporters in Laccaria bicolor. New Phytol 180:343–364PubMedCrossRefGoogle Scholar
  34. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577PubMedCrossRefGoogle Scholar
  35. Martin F, Aerts A, Ahren D, Brun A, Danchin EG, Duchaussoy F et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92PubMedCrossRefGoogle Scholar
  36. Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP et al (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA 106:1954–1959PubMedCrossRefGoogle Scholar
  37. Martinez AT, Rencoret J, Nieto L, Jimenez-Barbero J, Gutierrez A, del Rio JC (2011) Selective lignin and polysaccharide removal in natural fungal decay of wood as evidenced by in situ structural analyses. Environ Microbiol 13:96–107PubMedCrossRefGoogle Scholar
  38. Martiny AC, Treseder K, Pusch G (2013) Phylogenetic conservatism of functional traits in microorganisms. ISME J 7:830–838PubMedCrossRefGoogle Scholar
  39. Marzluf GA (1996) Regulation of nitrogen metabolism in mycelial fungi. In: Brambl B, Marzluf GA (eds) The mycota III. Biochemistry and molecular biology. Springer, BerlinGoogle Scholar
  40. Morin E, Kohler A, Baker AR, Foulongne-Oriol M, Lombard V, Nagy LG et al (2012) Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc Natl Acad Sci USA 109:17501–17506PubMedCrossRefGoogle Scholar
  41. Nagendran S, Hallen-Adams HE, Paper JM, Aslam N, Walton JD (2009) Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei. Fungal Genet Biol 46:427–435PubMedCrossRefGoogle Scholar
  42. Nannipieri N, Eldor P (2009) The chemical and functional characterization of soil N and its biotic components. Soil Biol Biochem 41:2357–2369CrossRefGoogle Scholar
  43. Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48PubMedCrossRefGoogle Scholar
  44. Nehls U, Kleber R, Wiese J, Hampp R (1999) Isolation and characterization of an general amino acid permease from the ectomycorrhizal fungus Amanita muscaria. New Phytol 142:331–341Google Scholar
  45. Nehls U, Bock A, Einig W, Hampp R (2001) Excretion of two proteases by the ectomycorrhizal fungus Amanita muscaria. Plant Cell Environ 24:741–747CrossRefGoogle Scholar
  46. Nehls U, Grunze N, Willmann M, Reich M, Kuster H (2007) Sugar for my honey: carbohydrate partitioning in ectomycorrhizal symbiosis. Phytochemistry 68:82–91PubMedCrossRefGoogle Scholar
  47. Nehls U, Gohringer F, Wittulsky S, Dietz S (2010) Fungal carbohydrate support in the ectomycorrhizal symbiosis: a review. Plant Biol 12:292–301PubMedCrossRefGoogle Scholar
  48. Norkrans B (1950) Studies in growth and cellulolytic enzymes of Tricholoma. Symbolae Botanicae Upsaliensis 11:1–126Google Scholar
  49. Nygren CJM, Edqvist J, Elfstrand M, Heller G, Taylor AFS (2007) Detection of extracellular protease activity in different species and genera of ectomycorrhizal fungi. Mycorrhiza 17:241–248PubMedCrossRefGoogle Scholar
  50. Olsson PA, Chalot M, Bååth E, Finlay RD, Söderström B (1996) Ectomycorrhizal mycelia reduce bacterial activity in a sandy soil. FEMS Microbiol Ecol 21:77–86CrossRefGoogle Scholar
  51. Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166:810–832CrossRefGoogle Scholar
  52. Pritsch K, Garbaye J (2011) Enzyme secretion by ECM fungi and exploitation of mineral nutrients from soil organic matter. Ann Forest Sci 68:25–32CrossRefGoogle Scholar
  53. Quinlan RJ, Sweeney MD, Lo LL, Otten H, Poulsen JC, Johansen KS et al (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci USA 108:15079–15084PubMedCrossRefGoogle Scholar
  54. Ralph J, Lundquidt K, Brunow G, Lu F, Kim H, Schatz PF et al (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids. Phytochem Rev 3:29–60CrossRefGoogle Scholar
  55. Ramstedt M, Söderhäll K (1983) Protease, phenoloxidase and pectinase activities in mycorrhizal fungi. Trans Br Mycol Soc 81:157–161CrossRefGoogle Scholar
  56. Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol 157:475–492CrossRefGoogle Scholar
  57. Read DJ, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263CrossRefGoogle Scholar
  58. Rineau F, Roth D, Shah F, Smits M, Johansson T, Canback B et al (2012) The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry. Environ Microbiol 14:1477–1487PubMedCrossRefGoogle Scholar
  59. Rineau F, Shah F, Smits MM, Persson P, Johansson T, Carleer R et al (2013) Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus. ISME J (in press). doi:  10.1038/ismej.2013.91
  60. Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602CrossRefGoogle Scholar
  61. Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA et al (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56PubMedCrossRefGoogle Scholar
  62. Senesi N, Miano TM, Provenzano MR, Brunetti G (1991) Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy. Soil Sci 152:259–271CrossRefGoogle Scholar
  63. Shah F, Rineau F, Canbäck B, Johansson T, Tunlid A (2013) The molecular components of the extracellular protein-degradation pathways of the ectomycorrhizal fungus Paxillus involutus. New Phytol (in press)Google Scholar
  64. Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, San DiegoGoogle Scholar
  65. Sutton R, Sposito G (2005) Molecular structure in soil humic substances: the new view. Environ Sci Technol 39:9009–9015PubMedCrossRefGoogle Scholar
  66. Talbot JM, Treseder KK (2010) Controls over mycorrhizal uptake of organic nitrogen. Pedobiologia 53:169–179CrossRefGoogle Scholar
  67. Talbot JM, Allison SD, Treseder KK (2008) Decomposer ín disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Func Ecol 22:955–963CrossRefGoogle Scholar
  68. Trappe JM (2005) A.B.. Frank and mycorrhizae: the challenge to evolutionary and ecological theory. Mycorrhiza 15:277–281PubMedCrossRefGoogle Scholar
  69. Trojanowski J, Haider K, Huttermann A (1984) Decomposition of 14C labelled lignin, holocellulose and lignocellulose by mycorrhizal fungi. Arch Microbiol 139:202–206CrossRefGoogle Scholar
  70. Vanden Wymelenberg A, Gaskell J, Mozuch M, Sabat G, Ralph J, Skyba O et al (2010) Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl Environ Microbiol 76:3599–3610CrossRefGoogle Scholar
  71. Wallander H, Söderström B (1999) Paxillus. In: Cairney JWG, Chambers SM (eds) Ectomycorrhizal fungi: key genera in profile. Springer, BerlinGoogle Scholar
  72. Wallander H, Ekblad A, Bergh J (2011) Growth and carbon sequestration by ectomycorrhizal fungi in intensively fertilized Norway spruce forests. Forest Ecol Manage 262:999–1007CrossRefGoogle Scholar
  73. Wipf D, Benjdia M, Tegeder M, Frommer WB (2002) Characterization of a general amino acid permease from Hebeloma cylindrosporum. FEBS Lett 528:119–124PubMedCrossRefGoogle Scholar
  74. Wright DP, Johansson T, Le Quéré A, Söderström B, Tunlid A (2005) Spatial patterns of gene expression in the extramatrical mycelium and mycorrhizal root tips formed by the ectomycorrhizal fungus Paxillus involutus in association with birch (Betula pendula Roth.) seedlings in soil microcosms. New Phytol 167:579–596PubMedCrossRefGoogle Scholar
  75. Wu T, Sharda JN, Koide RT (2003) Exploring interactions between saprotrophic microbes and ectomycorrhizal fungi using protein-tannin complex as an N source by red pine (Pinus resinosa). New Phytol 159:131–139CrossRefGoogle Scholar
  76. Yelle DJ, Wei D, Ralph J, Hammel KE (2011) Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta. Environ Microbiol 13:1091–1100PubMedCrossRefGoogle Scholar
  77. Zhu H, Guo DC, Dancik BP (1990) Purification and characterization of an extracellular acid proteinase from the ectomycorrhizal fungus Hebeloma crustuliniforme. Appl Environ Microbiol 56:837–843PubMedGoogle Scholar
  78. Zhu H, Dancik BP, Higginbotham KO (1994) Regulation of extracellular proteinase production in an ectomycorrhizal fungus Hebeloma crustuliniforme. Mycologia 86:227–234CrossRefGoogle Scholar
  79. Zimmerman AE, Martiny AC, Allison SD (2013) Microdiversity of extracellular enzyme genes among sequenced prokaryotic genomes. ISME J 7:1187–1199PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anders Tunlid
    • 1
    Email author
  • Francois Rineau
    • 2
  • Mark Smits
    • 2
  • Firoz Shah
    • 1
  • Cesar Nicolas
    • 1
  • Tomas Johansson
    • 1
  • Per Persson
    • 1
    • 3
  • Francis Martin
    • 4
  1. 1.Department of Biology, Microbial Ecology GroupLund UniversityLundSweden
  2. 2.Centre for Environmental SciencesHasselt UniversityDiepenbeekBelgium
  3. 3.Centre for Environmental and Climate Research (CEC)Lund UniversityLundSweden
  4. 4.INRA-Nancy, Lab of Excellence ARBREUMR INRA-University of Lorraine ‘Interactions Arbres/Micro-organismes’ChampenouxFrance

Personalised recommendations