Advertisement

Fusarium oxysporum: A “Moving” View of Pathogenicity

  • Apratim Chakrabarti
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 36)

Abstract

The genus Fusarium includes a number of important soilborne plant pathogenic and toxicogenic filamentous fungi with worldwide distribution. They have been subjected to considerable research, and availability of tools like transposon tagging, Agrobacterium-mediated transformation and gene disruption has facilitated both forward and reverse genetic studies of plant pathogenesis in Fusarium. Research on Fusarium genetics and genomics accelerated with the availability and analysis of whole genome sequence of four important species, viz. F. graminearum, F. verticillioides, F. oxysporum and F. solani. Detailed bioinformatics and experimental evidence revealed an interesting secret in Fusarium pathogenicity—the existence of lineage-specific (LS) genomic regions in F. oxysporum that could determine pathogenicity. It was proven experimentally that in F. oxysporum transfer of such a lineage-specific chromosome harbouring pathogenicity genes could render a non-pathogenic strain pathogenic. This mobile pathogenicity chromosome opened up a very novel field of research involving horizontal chromosome transfer (HCT) as a basic mechanism in the evolution of Fusarium species.

Keywords

Tomato Plant Plant Infection Fusarium Oxysporum Fusarium Species Fusaric Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agrios GN (2004) Plant pathology, 5th edn. Elsevier, Burlington, MAGoogle Scholar
  2. Akagi Y, Akamatsu H, Otani H, Kodama M (2009) Horizontal chromosome transfer, a mechanism for the evolution and differentiation of a plant-pathogenic fungus. Eukaryot Cell 8:1732–1738PubMedGoogle Scholar
  3. Akamatsu H, Taga M, Kodama M, Johnson R, Otani H, Kohmoto K (1999) Molecular karyotypes for Alternaria plant pathogens known to produce host-specific toxins. Curr Genet 35:647–656PubMedGoogle Scholar
  4. Bayram O, Braus GH (2012) Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36:1–24PubMedGoogle Scholar
  5. Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506PubMedGoogle Scholar
  6. Beckman CH (2000) Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol Mol Plant Pathol 57:101–110Google Scholar
  7. Beckman CH, Roberts E (1995) On the nature and genetic basis for resistance and tolerance to fungal wilt diseases of plants. Adv Bot Res 21:35–77Google Scholar
  8. Bishop C, Cooper RM (1983) An ultrastructural study of vascular colonization in three vascular wilt diseases. I. Colonization of susceptible cultivars. Physiol Plant Pathol 23:323–343Google Scholar
  9. Bishop C, Cooper RM (1984) Ultrastructure of vascular colonization by fungal wilt pathogens. II. Invasion of resistant cultivars. Physiol Plant Pathol 24:277–289Google Scholar
  10. Bölker M (1998) Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genet Biol 25:143–156PubMedGoogle Scholar
  11. Bolton MD, Thomma BPHJ (2008) The complexity of nitrogen metabolism and nitrogen-regulated gene expression in plant pathogenic fungi. Physiol Mol Plant Pathol 72:104–110Google Scholar
  12. Bulk R (1991) Application of cell and tissue culture and in vitro selection for disease resistance breeding—a review. Euphytica 56:269–285Google Scholar
  13. Calero-Nieto F, Di Pietro A, Roncero MI, Hera C (2007) Role of the transcriptional activator xlnR of Fusarium oxysporum in regulation of xylanase genes and virulence. Mol Plant Microbe Interact 20:977–985PubMedGoogle Scholar
  14. Calero-Nieto F, Hera C, Di Pietro A, Orejas M, Roncero MI (2008) Regulatory elements mediating expression of xylanase genes in Fusarium oxysporum. Fungal Genet Biol 45:28–34PubMedGoogle Scholar
  15. Canero DC, Roncero MI (2008a) Functional analyses of laccase genes from Fusarium oxysporum. Phytopathology 98:509–518PubMedGoogle Scholar
  16. Canero DC, Roncero MI (2008b) Influence of the chloride channel of Fusarium oxysporum on extracellular laccase activity and virulence on tomato plants. Microbiology 154:1474–1481PubMedGoogle Scholar
  17. Caracuel Z, Roncero MI, Espeso EA, Gonzalez-Verdejo CI, Garcia-Maceira FI, Di Pietro A (2003) The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Mol Microbiol 48:765–779PubMedGoogle Scholar
  18. Caracuel Z, Martinez-Rocha AL, Di Pietro A, Madrid MP, Roncero MI (2005) Fusarium oxysporum gas1 encodes a putative beta-1,3-glucanosyltransferase required for virulence on tomato plants. Mol Plant Microbe Interact 18:1140–1147PubMedGoogle Scholar
  19. Chakrabarti A, Rep M, Wang B, Ashton A, Dodds P, Ellis J (2011) Variation in potential effector genes distinguishing Australian and non‐Australian isolates of the cotton wilt pathogen Fusarium oxysporum f. sp. vasinfectum. Plant Pathol 60:232–243Google Scholar
  20. Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC, Grimwood J, Schmutz J, Taga M, White GJ, Zhou S, Schwartz DC, Freitag M, Ma LJ, Danchin EG, Henrissat B, Coutinho PM, Nelson DR, Straney D, Napoli CA, Barker BM, Gribskov M, Rep M, Kroken S, Molnar I, Rensing C, Kennell JC, Zamora J, Farman ML, Selker EU, Salamov A, Shapiro H, Pangilinan J, Lindquist E, Lamers C, Grigoriev IV, Geiser DM, Covert SF, Temporini E, Vanetten HD (2009) The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet 5:e1000618PubMedGoogle Scholar
  21. Cullen PJ, Sabbagh W Jr, Graham E, Irick MM, Van Olden EK, Neal C, Delrow J, Bardwell L, Sprague GF Jr (2004) A signaling mucin at the head of the Cdc42-and MAPK-dependent filamentous growth pathway in yeast. Sci Signal 18:1695Google Scholar
  22. Cuomo CA, Güldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, Walton JD, Ma LJ, Baker SE, Rep M (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400–1402PubMedGoogle Scholar
  23. Czymmek KJ, Fogg M, Powell DH, Sweigard J, Park SY, Kang S (2007) In vivo time-lapse documentation using confocal and multi-photon microscopy reveals the mechanisms of invasion into the Arabidopsis root vascular system by Fusarium oxysporum. Fungal Genet Biol 44:1011–1023PubMedGoogle Scholar
  24. de Vega-Bartol JJ, Martin-Dominguez R, Ramos B, Garcia-Sanchez MA, Diaz-Minguez JM (2011) New virulence groups in Fusarium oxysporum f. sp. phaseoli: the expression of the gene coding for the transcription factor ftf1 correlates with virulence. Phytopathology 101:470–479PubMedGoogle Scholar
  25. Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430PubMedGoogle Scholar
  26. Delgado-Jarana J, Martinez-Rocha AL, Roldan-Rodriguez R, Roncero MI, Di Pietro A (2005) Fusarium oxysporum G-protein beta subunit Fgb1 regulates hyphal growth, development, and virulence through multiple signalling pathways. Fungal Genet Biol 42:61–72PubMedGoogle Scholar
  27. DeZwaan TM, Carroll AM, Valent B, Sweigard JA (1999) Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11:2013–2030PubMedGoogle Scholar
  28. Di Pietro A, Roncero M (1996a) Purification and characterization of a pectate lyase from Fusarium oxysporum f. sp. lycopersici produced on tomato vascular tissue. Physiol Mol Plant Pathol 49:177–185Google Scholar
  29. Di Pietro A, Roncero MIG (1996b) Endopolygalacturonase from Fusarium oxysporum f. sp. lycopersici: purification, characterization, and production during infection of tomato plants. Phytopathology 86:1324–1330Google Scholar
  30. Di Pietro A, Roncero MI (1998) Cloning, expression, and role in pathogenicity of pg1 encoding the major extracellular endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporum. Mol Plant Microbe Interact 11:91–98PubMedGoogle Scholar
  31. Di Pietro A, Roncero MIG (2006) Purification and characterization of an exo‐polygalacturonase from the tomato vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici. FEMS Microbiol Lett 145:295–299Google Scholar
  32. Di Pietro A, Garcia-MacEira FI, Meglecz E, Roncero MI (2001) A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Mol Microbiol 39:1140–1152PubMedGoogle Scholar
  33. Di Pietro A, Madrid MP, Caracuel Z, Delgado-Jarana J, Roncero MI (2003) Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Mol Plant Pathol 4:315–325PubMedGoogle Scholar
  34. Divon HH, Ziv C, Davydov O, Yarden O, Fluhr R (2006) The global nitrogen regulator, FNR1, regulates fungal nutrition-genes and fitness during Fusarium oxysporum pathogenesis. Mol Plant Pathol 7:485–497PubMedGoogle Scholar
  35. Dowd C, Wilson IW, McFadden H (2004) Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f. sp. vasinfectum. Mol Plant Microbe Interact 17:654–667PubMedGoogle Scholar
  36. Duyvesteijn RG, van Wijk R, Boer Y, Rep M, Cornelissen BJ, Haring MA (2005) Frp1 is a Fusarium oxysporum F-box protein required for pathogenicity on tomato. Mol Microbiol 57:1051–1063PubMedGoogle Scholar
  37. Ellis JG, Rafiqi M, Gan P, Chakrabarti A, Dodds PN (2009) Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens. Curr Opin Plant Biol 12:399–405PubMedGoogle Scholar
  38. Fourie G, Steenkamp ET, Gordon TR, Viljoen A (2009) Evolutionary relationships among the Fusarium oxysporum f. sp. cubense vegetative compatibility groups. Appl Environ Microbiol 75:4770–4781PubMedGoogle Scholar
  39. Fourie G, Steenkamp ET, Ploetz RC, Gordon TR, Viljoen A (2011) Current status of the taxonomic position of Fusarium oxysporum formae specialis cubense within the Fusarium oxysporum complex. Infect Genet Evol 11:533–542PubMedGoogle Scholar
  40. Garcia-Maceira FI, Di Pietro A, Huertas-Gonzalez MD, Ruiz-Roldan MC, Roncero MI (2001) Molecular characterization of an endopolygalacturonase from Fusarium oxysporum expressed during early stages of infection. Appl Environ Microbiol 67:2191–2196PubMedGoogle Scholar
  41. Garcıća Maceira FI, Pietro A, Roncero MIG (1997) Purification and characterization of a novel exopolygalacturonase from Fusarium oxysporum f. sp. lycopersici. FEMS Microbiol Lett 154:37–43Google Scholar
  42. Gardiner DM, Osborne S, Kazan K, Manners JM (2009) Low pH regulates the production of deoxynivalenol by Fusarium graminearum. Microbiology 155:3149–3156PubMedGoogle Scholar
  43. Geiser D, del Mar Jiménez-Gasco M, Kang S, Makalowska I, Veeraraghavan N, Ward T, Zhang N, Kuldau G, O’Donnell K (2004) FUSARIUM-ID v. 1.0: a DNA sequence database for identifying Fusarium. Eur J Plant Pathol 110:473–479Google Scholar
  44. Glass NL, Jacobson DJ, Shiu PK (2000) The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Annu Rev Genet 34:165–186PubMedGoogle Scholar
  45. Gomez-Gomez E, Isabel M, Roncero G, Di Pietro A, Hera C (2001) Molecular characterization of a novel endo-beta-1,4-xylanase gene from the vascular wilt fungus Fusarium oxysporum. Curr Genet 40:268–275PubMedGoogle Scholar
  46. Gomez-Gomez E, Ruiz-Roldan MC, Di Pietro A, Roncero MI, Hera C (2002) Role in pathogenesis of two endo-beta-1,4-xylanase genes from the vascular wilt fungus Fusarium oxysporum. Fungal Genet Biol 35:213–222PubMedGoogle Scholar
  47. Gordon T, Martyn R (1997) The evolutionary biology of Fusarium oxysporum. Annu Rev Phytopathol 35:111–128PubMedGoogle Scholar
  48. Hamm HE (1998) The many faces of G protein signaling. J Biol Chem 273:669–672PubMedGoogle Scholar
  49. Harwood CS, Parales RE (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590PubMedGoogle Scholar
  50. Hatta R, Ito K, Hosaki Y, Tanaka T, Tanaka A, Yamamoto M, Akimitsu K, Tsuge T (2002) A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata. Genetics 161:59–70PubMedGoogle Scholar
  51. He C, Rusu AG, Poplawski AM, Irwin JA, Manners JM (1998) Transfer of a supernumerary chromosome between vegetatively incompatible biotypes of the fungus Colletotrichum gloeosporioides. Genetics 150:1459–1466PubMedGoogle Scholar
  52. Hogenhout SA, Van der Hoorn RA, Terauchi R, Kamoun S (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant Microbe Interact 22:115–122PubMedGoogle Scholar
  53. Houterman PM, Cornelissen BJ, Rep M (2008) Suppression of plant resistance gene-based immunity by a fungal effector. PLoS Pathog 4:e1000061PubMedGoogle Scholar
  54. Houterman PM, Ma L, van Ooijen G, de Vroomen MJ, Cornelissen BJ, Takken FL, Rep M (2009) The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly. Plant J 58:970–978PubMedGoogle Scholar
  55. Hu J, Chen C, Peever T, Dang H, Lawrence C, Mitchell T (2012) Genomic characterization of the conditionally dispensable chromosome in Alternaria arborescens provides evidence for horizontal gene transfer. BMC Genomics 13:171PubMedGoogle Scholar
  56. Imazaki I, Kurahashi M, Iida Y, Tsuge T (2007) Fow2, a Zn(II)2Cys6-type transcription regulator, controls plant infection of the vascular wilt fungus Fusarium oxysporum. Mol Microbiol 63:737–753PubMedGoogle Scholar
  57. Ishikawa FH, Souza EA, Shoji JY, Connolly L, Freitag M, Read ND, Roca MG (2012) Heterokaryon incompatibility is suppressed following conidial anastomosis tube fusion in a fungal plant pathogen. PLoS One 7:e31175PubMedGoogle Scholar
  58. Ito S, Takahara H, Kawaguchi T, Tanaka S, Kameya‐Iwaki M (2002) Post‐transcriptional silencing of the tomatinase gene in Fusarium oxysporum f. sp lycopersici. J Phytopathol 150:474–480Google Scholar
  59. Ito S, Eto T, Tanaka S, Yamauchi N, Takahara H, Ikeda T (2004) Tomatidine and lycotetraose, hydrolysis products of alpha-tomatine by Fusarium oxysporum tomatinase, suppress induced defense responses in tomato cells. FEBS Lett 571:31–34PubMedGoogle Scholar
  60. Ito S, Ihara T, Tamura H, Tanaka S, Ikeda T, Kajihara H, Dissanayake C, Abdel-Motaal FF, El-Sayed MA (2007) alpha-Tomatine, the major saponin in tomato, induces programmed cell death mediated by reactive oxygen species in the fungal pathogen Fusarium oxysporum. FEBS Lett 581:3217–3222PubMedGoogle Scholar
  61. Jain S, Akiyama K, Mae K, Ohguchi T, Takata R (2002) Targeted disruption of a G protein alpha subunit gene results in reduced pathogenicity in Fusarium oxysporum. Curr Genet 41:407–413PubMedGoogle Scholar
  62. Jain S, Akiyama K, Kan T, Ohguchi T, Takata R (2003) The G protein beta subunit FGB1 regulates development and pathogenicity in Fusarium oxysporum. Curr Genet 43:79–86PubMedGoogle Scholar
  63. Jain S, Akiyama K, Takata R, Ohguchi T (2005) Signaling via the G protein alpha subunit FGA2 is necessary for pathogenesis in Fusarium oxysporum. FEMS Microbiol Lett 243:165–172PubMedGoogle Scholar
  64. Johnson LJ, Johnson RD, Akamatsu H, Salamiah A, Otani H, Kohmoto K, Kodama M (2001) Spontaneous loss of a conditionally dispensable chromosome from the Alternaria alternata apple pathotype leads to loss of toxin production and pathogenicity. Curr Genet 40:65–72PubMedGoogle Scholar
  65. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329PubMedGoogle Scholar
  66. Jonkers W, Rep M (2009a) Mutation of CRE1 in Fusarium oxysporum reverts the pathogenicity defects of the FRP1 deletion mutant. Mol Microbiol 74:1100–1113PubMedGoogle Scholar
  67. Jonkers W, Rep M (2009b) Lessons from fungal F-box proteins. Eukaryot Cell 8:677–695PubMedGoogle Scholar
  68. Jonkers W, Rodrigues CD, Rep M (2009) Impaired colonization and infection of tomato Δroots by the Deltafrp1 mutant of Fusarium oxysporum correlates with reduced CWDE gene expression. Mol Plant Microbe Interact 22:507–518PubMedGoogle Scholar
  69. Jonkers W, Dong Y, Broz K, Kistler HC (2012) The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum. PLoS Pathog 8:e1002724PubMedGoogle Scholar
  70. Kapteyn JC, Ram AF, Groos EM, Kollar R, Montijn RC, Van Den Ende H, Llobell A, Cabib E, Klis FM (1997) Altered extent of cross-linking of beta1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall beta1,3-glucan content. J Bacteriol 179:6279–6284PubMedGoogle Scholar
  71. Kazan K, Gardiner DM, Manners JM (2012) On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. Mol Plant Pathol 13(4):399–413PubMedGoogle Scholar
  72. Kidd BN, Edgar CI, Kumar KK, Aitken EA, Schenk PM, Manners JM, Kazan K (2009) The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell 21:2237–2252PubMedGoogle Scholar
  73. Kistler HC, Alabouvette C, Baayen RP, Bentley S, Brayford D, Coddington A, Correll J, Daboussi MJ, Elias K, Fernandez D, Gordon TR, Katan T, Kim HG, Leslie JF, Martyn RD, Migheli Q, Moore NY, O’Donnell K, Ploetz RC, Rutherford MA, Summerell B, Waalwijk C, Woo S (1998) Systematic numbering of vegetative compatibility groups in the plant pathogenic fungus Fusarium oxysporum. Phytopathology 88:30–32PubMedGoogle Scholar
  74. Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE, Thomma BP, Chen Z, Henrissat B, Lee YH, Park J, Garcia-Pedrajas MD, Barbara DJ, Anchieta A, de Jonge R, Santhanam P, Maruthachalam K, Atallah Z, Amyotte SG, Paz Z, Inderbitzin P, Hayes RJ, Heiman DI, Young S, Zeng Q, Engels R, Galagan J, Cuomo CA, Dobinson KF, Ma LJ (2011) Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathog 7:e1002137PubMedGoogle Scholar
  75. Lagopodi AL, Ram AF, Lamers GE, Punt PJ, Van den Hondel CA, Lugtenberg BJ, Bloemberg GV (2002) Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. Mol Plant Microbe Interact 15:172–179PubMedGoogle Scholar
  76. Lairini K, Perez-Espinosa A, Pineda M, Ruiz-Rubio M (1996) Purification and characterization of tomatinase from Fusarium oxysporum f. sp. lycopersici. Appl Environ Microbiol 62:1604–1609PubMedGoogle Scholar
  77. Lenardon MD, Munro CA, Gow NA (2010) Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol 13:416–423PubMedGoogle Scholar
  78. Leslie JF, Summerell BA, Bullock S (2006) The Fusarium laboratory manual. Wiley, OxfordGoogle Scholar
  79. Levin DE (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:262–291PubMedGoogle Scholar
  80. Lievens B, Houterman PM, Rep M (2009) Effector gene screening allows unambiguous identification of Fusarium oxysporum f. sp. lycopersici races and discrimination from other formae speciales. FEMS Microbiol Lett 300:201–215PubMedGoogle Scholar
  81. Lopez-Berges MS, Di Pietro A, Daboussi MJ, Wahab HA, Vasnier C, Roncero MI, Dufresne M, Hera C (2009) Identification of virulence genes in Fusarium oxysporum f. sp. lycopersici by large-scale transposon tagging. Mol Plant Pathol 10:95–107PubMedGoogle Scholar
  82. Lopez-Berges MS, Rispail N, Prados-Rosales RC, Di Pietro A (2010) A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB. Plant Cell 22:2459–2475PubMedGoogle Scholar
  83. Lopez-Berges MS, Capilla J, Turra D, Schafferer L, Matthijs S, Jochl C, Cornelis P, Guarro J, Haas H, Di Pietro A (2012) HapX-mediated iron homeostasis is essential for rhizosphere competence and virulence of the soilborne pathogen Fusarium oxysporum. Plant Cell 24:3805–3822PubMedGoogle Scholar
  84. Lopez-Berges MS, Hera C, Sulyok M, Schafer K, Capilla J, Guarro J, Di Pietro A (2013) The velvet complex governs mycotoxin production and virulence of Fusarium oxysporum on plant and mammalian hosts. Mol Microbiol 87:49–65PubMedGoogle Scholar
  85. Luz J, Paterson R, Brayford D (1990) Fusaric acid and other metabolite production in Fusarium oxysporum f. sp. vasinfectum. Lett Appl Microbiol 11:141–144Google Scholar
  86. Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B, Houterman PM, Kang S, Shim WB, Woloshuk C, Xie X, Xu JR, Antoniw J, Baker SE, Bluhm BH, Breakspear A, Brown DW, Butchko RA, Chapman S, Coulson R, Coutinho PM, Danchin EG, Diener A, Gale LR, Gardiner DM, Goff S, Hammond-Kosack KE, Hilburn K, Hua-Van A, Jonkers W, Kazan K, Kodira CD, Koehrsen M, Kumar L, Lee YH, Li L, Manners JM, Miranda-Saavedra D, Mukherjee M, Park G, Park J, Park SY, Proctor RH, Regev A, Ruiz-Roldan MC, Sain D, Sakthikumar S, Sykes S, Schwartz DC, Turgeon BG, Wapinski I, Yoder O, Young S, Zeng Q, Zhou S, Galagan J, Cuomo CA, Kistler HC, Rep M (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373PubMedGoogle Scholar
  87. Madrid MP, Di Pietro A, Roncero MI (2003) Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum and mediates resistance to plant defence compounds. Mol Microbiol 47:257–266PubMedGoogle Scholar
  88. Manners JM, He C (2011) Slow-growing heterokaryons as potential intermediates in supernumerary chromosome transfer between biotypes of Colletotrichum gloeosporioides. Mycol Prog 10:383–388Google Scholar
  89. Marinissen MJ, Gutkind JS (2001) G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22:368–376PubMedGoogle Scholar
  90. Martinez-Rocha AL, Roncero MI, Lopez-Ramirez A, Marine M, Guarro J, Martinez-Cadena G, Di Pietro A (2008) Rho1 has distinct functions in morphogenesis, cell wall biosynthesis and virulence of Fusarium oxysporum. Cell Microbiol 10:1339–1351PubMedGoogle Scholar
  91. Martin-Udiroz M, Madrid MP, Roncero MI (2004) Role of chitin synthase genes in Fusarium oxysporum. Microbiology 150:3175–3187PubMedGoogle Scholar
  92. Martin-Urdiroz M, Roncero MI, Gonzalez-Reyes JA, Ruiz-Roldan C (2008) ChsVb, a class VII chitin synthase involved in septation, is critical for pathogenicity in Fusarium oxysporum. Eukaryot Cell 7:112–121PubMedGoogle Scholar
  93. Matsumoto K, Barbosa ML, Souza LAC, Teixeira JB (1995) Race 1 fusarium wilt tolerance on banana plants selected by fusaric acid. Euphytica 84:67–71Google Scholar
  94. McFadden HG, Wilson IW, Chapple RM, Dowd C (2006) Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) genes expressed during infection of cotton (Gossypium hirsutum)dagger. Mol Plant Pathol 7:87–101PubMedGoogle Scholar
  95. Meldrum R, Fraser-Smith S, Tran-Nguyen LTT, Daly A, Aitken EAB (2012) Presence of putative pathogenicity genes in isolates of Fusarium oxysporum f. sp. cubense from Australia. Australas Plant Pathol 41:551–557Google Scholar
  96. Merhej J, Urban M, Dufresne M, Hammond-Kosack KE, Richard-Forget F, Barreau C (2012) The velvet gene, FgVe1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in Fusarium graminearum. Mol Plant Pathol 13:363–374PubMedGoogle Scholar
  97. Mesterhazy A (1973) The morphology of an underscribed form of anastomosis in Fusarium. Mycologia 65:916–919PubMedGoogle Scholar
  98. Michielse CB, Rep M (2009) Pathogen profile update: Fusarium oxysporum. Mol Plant Pathol 10:311–324PubMedGoogle Scholar
  99. Michielse CB, van Wijk R, Reijnen L, Cornelissen BJ, Rep M (2009a) Insight into the molecular requirements for pathogenicity of Fusarium oxysporum f. sp. lycopersici through large-scale insertional mutagenesis. Genome Biol 10:R4PubMedGoogle Scholar
  100. Michielse CB, van Wijk R, Reijnen L, Manders EM, Boas S, Olivain C, Alabouvette C, Rep M (2009b) The nuclear protein Sge1 of Fusarium oxysporum is required for parasitic growth. PLoS Pathog 5:e1000637PubMedGoogle Scholar
  101. Michielse CB, Reijnen L, Olivain C, Alabouvette C, Rep M (2012) Degradation of aromatic compounds through the beta-ketoadipate pathway is required for pathogenicity of the tomato wilt pathogen Fusarium oxysporum f. sp. lycopersici. Mol Plant Pathol 13:1089–1100PubMedGoogle Scholar
  102. O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci U S A 95:2044–2049PubMedGoogle Scholar
  103. O’Donnell K, Gueidan C, Sink S, Johnston PR, Crous PW, Glenn A, Riley R, Zitomer NC, Colyer P, Waalwijk C, Lee T, Moretti A, Kang S, Kim HS, Geiser DM, Juba JH, Baayen RP, Cromey MG, Bithell S, Sutton DA, Skovgaard K, Ploetz R, Corby Kistler H, Elliott M, Davis M, Sarver BA (2009) A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex. Fungal Genet Biol 46:936–948PubMedGoogle Scholar
  104. Olivain C, Alabouvette C (1999) Process of tomato root colonization by a pathogenic strain of Fusarium oxysporum f. sp. lycopersici in comparison with a non‐pathogenic strain. New Phytol 141:497–510Google Scholar
  105. Olivain C, Humbert C, Nahalkova J, Fatehi J, L’Haridon F, Alabouvette C (2006) Colonization of tomato root by pathogenic and nonpathogenic Fusarium oxysporum strains inoculated together and separately into the soil. Appl Environ Microbiol 72:1523–1531PubMedGoogle Scholar
  106. Ortoneda M, Guarro J, Madrid MP, Caracuel Z, Roncero MI, Mayayo E, Di Pietro A (2004) Fusarium oxysporum as a multihost model for the genetic dissection of fungal virulence in plants and mammals. Infect Immun 72:1760–1766PubMedGoogle Scholar
  107. Ospina-Giraldo MD, Mullins E, Kang S (2003) Loss of function of the Fusarium oxysporum SNF1 gene reduces virulence on cabbage and Arabidopsis. Curr Genet 44:49–57PubMedGoogle Scholar
  108. Palecek SP, Parikh AS, Huh JH, Kron SJ (2002) Depression of Saccharomyces cerevisiae invasive growth on non-glucose carbon sources requires the Snf1 kinase. Mol Microbiol 45:453–469PubMedGoogle Scholar
  109. Pareja-Jaime Y, Roncero MI, Ruiz-Roldan MC (2008) Tomatinase from Fusarium oxysporum f. sp. lycopersici is required for full virulence on tomato plants. Mol Plant Microbe Interact 21:728–736PubMedGoogle Scholar
  110. Peñalva MA, Tilburn J, Bignell E, Arst HN (2008) Ambient pH gene regulation in fungi: making connections. Trends Microbiol 16:291–300PubMedGoogle Scholar
  111. Pérez-García A, Snoeijers SS, Joosten MHAJ, Goosen T, De Wit PJGM (2001) Expression of the avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum is regulated by the global nitrogen response factor NRF1. Mol Plant Microbe Interact 14:316–325PubMedGoogle Scholar
  112. Perez-Nadales E, Di Pietro A (2011) The membrane mucin Msb2 regulates invasive growth and plant infection in Fusarium oxysporum. Plant Cell 23:1171–1185PubMedGoogle Scholar
  113. Prados Rosales RC, Di Pietro A (2008) Vegetative hyphal fusion is not essential for plant infection by Fusarium oxysporum. Eukaryot Cell 7:162–171PubMedGoogle Scholar
  114. Qu P, Yamashita K, Toda T, Priyatmojo A, Kubota M, Hyakumachi M (2008) Heterokaryon formation in Thanatephorus cucumeris (Rhizoctonia solani) AG-1 IC. Mycol Res 112:1088–1100PubMedGoogle Scholar
  115. Ramos B, Alves-Santos FM, Garcia-Sanchez MA, Martin-Rodrigues N, Eslava AP, Diaz-Minguez JM (2007) The gene coding for a new transcription factor (ftf1) of Fusarium oxysporum is only expressed during infection of common bean. Fungal Genet Biol 44:864–876PubMedGoogle Scholar
  116. Read ND, Roca MG (2006) Vegetative hyphal fusion in filamentous fungi. In: Baluska F, Volkmann D, Barlow PW (eds) Cell-cell channels. Springer, New York, NY, pp 87–98Google Scholar
  117. Rep M, Kistler HC (2010) The genomic organization of plant pathogenicity in Fusarium species. Curr Opin Plant Biol 13:420–426PubMedGoogle Scholar
  118. Rep M, van der Does HC, Meijer M, van Wijk R, Houterman PM, Dekker HL, de Koster CG, Cornelissen BJ (2004) A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Mol Microbiol 53:1373–1383PubMedGoogle Scholar
  119. Rep M, Meijer M, Houterman PM, van der Does HC, Cornelissen BJ (2005) Fusarium oxysporum evades I-3-mediated resistance without altering the matching avirulence gene. Mol Plant Microbe Interact 18:15–23PubMedGoogle Scholar
  120. Rispail N, Di Pietro A (2009) Fusarium oxysporum Ste12 controls invasive growth and virulence downstream of the Fmk1 MAPK cascade. Mol Plant Microbe Interact 22:830–839PubMedGoogle Scholar
  121. Rispail N, Di Pietro A (2010a) The homeodomain transcription factor Ste12: connecting fungal MAPK signalling to plant pathogenicity. Commun Integr Biol 3:327–332PubMedGoogle Scholar
  122. Rispail N, Di Pietro A (2010b) The two-component histidine kinase Fhk1 controls stress adaptation and virulence of Fusarium oxysporum. Mol Plant Pathol 11:395–407PubMedGoogle Scholar
  123. Roca MG, Davide LC, Mendes-Costa MC, Wheals A (2003) Conidial anastomosis tubes in Colletotrichum. Fungal Genet Biol 40:138–145PubMedGoogle Scholar
  124. Roca MG, Davide LC, Davide LM, Mendes-Costa MC, Schwan RF, Wheals AE (2004) Conidial anastomosis fusion between Colletotrichum species. Mycol Res 108:1320–1326PubMedGoogle Scholar
  125. Roca MG, Arlt J, Jeffree CE, Read ND (2005) Cell biology of conidial anastomosis tubes in Neurospora crassa. Eukaryot Cell 4:911–919PubMedGoogle Scholar
  126. Roca GM, Read ND, Wheals AE (2006) Conidial anastomosis tubes in filamentous fungi. FEMS Microbiol Lett 249:191–198Google Scholar
  127. Roldan-Arjona T, Perez-Espinosa A, Ruiz-Rubio M (1999) Tomatinase from Fusarium oxysporum f. sp. lycopersici defines a new class of saponinases. Mol Plant Microbe Interact 12:852–861PubMedGoogle Scholar
  128. Roncero C (2002) The genetic complexity of chitin synthesis in fungi. Curr Genet 41:367–378PubMedGoogle Scholar
  129. Rosales RCP, Di Pietro A (2008) Vegetative hyphal fusion is not essential for plant infection by Fusarium oxysporum. Eukaryot Cell 7:162–171Google Scholar
  130. Ruiz-Roldan MC, Kohli M, Roncero MI, Philippsen P, Di Pietro A, Espeso EA (2010) Nuclear dynamics during germination, conidiation, and hyphal fusion of Fusarium oxysporum. Eukaryot Cell 9:1216–1224PubMedGoogle Scholar
  131. Schure EG, Riel NAW, Verrips CT (2006) The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24:67–83Google Scholar
  132. Skovgaard K, Nirenberg HI, O’Donnell K, Rosendahl S (2001) Evolution of Fusarium oxysporum f. sp. vasinfectum races inferred from multigene genealogies. Phytopathology 91:1231–1237PubMedGoogle Scholar
  133. Snoeijers SS, Pérez-García A, Joosten MHAJ, De Wit PJGM (2000) The effect of nitrogen on disease development and gene expression in bacterial and fungal plant pathogens. Eur J Plant Pathol 106:493–506Google Scholar
  134. Soanes DM, Kershaw MJ, Cooley RN, Talbot NJ (2002) Regulation of the MPG1 hydrophobin gene in the rice blast fungus Magnaporthe grisea. Mol Plant Microbe Interact 15:1253–1267PubMedGoogle Scholar
  135. Stover R, Ploetz R (1990) Fusarium wilt of banana: some history and current status of the disease. In: Ploetz R (ed) Fusarium wilt of banana. APS Press, St Paul, MN, USA, pp 1–7Google Scholar
  136. Summerell BA, Laurence MH, Liew ECY, Leslie JF (2010) Biogeography and phylogeography of Fusarium: a review. Fungal Divers 44:3–13Google Scholar
  137. Takken F, Rep M (2010) The arms race between tomato and Fusarium oxysporum. Mol Plant Pathol 11:309–314PubMedGoogle Scholar
  138. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32PubMedGoogle Scholar
  139. Teichert S, Wottawa M, Schonig B, Tudzynski B (2006) Role of the Fusarium fujikuroi TOR kinase in nitrogen regulation and secondary metabolism. Eukaryot Cell 5:1807–1819PubMedGoogle Scholar
  140. Thatcher LF, Manners JM, Kazan K (2009) Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis. Plant J 58:927–939PubMedGoogle Scholar
  141. Thatcher LF, Gardiner DM, Kazan K, Manners JM (2012) A highly conserved effector in Fusarium oxysporum is required for full virulence on Arabidopsis. Mol Plant Microbe Interact 25:180–190PubMedGoogle Scholar
  142. Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26Google Scholar
  143. Toda T, Hyakumachi M (2006) Heterokaryon formation in Thanatephorus cucumeris anastomosis group 2-2 IV. Mycologia 98:726–736PubMedGoogle Scholar
  144. Tucker SL, Talbot NJ (2001) Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu Rev Phytopathol 39:385–417PubMedGoogle Scholar
  145. van der Does HC, Duyvesteijn RG, Goltstein PM, van Schie CC, Manders EM, Cornelissen BJ, Rep M (2008) Expression of effector gene SIX1 of Fusarium oxysporum requires living plant cells. Fungal Genet Biol 45:1257–1264PubMedGoogle Scholar
  146. Vu TT, Sikora RA, Hauschild R (2004) Effects of endophytic Fusarium oxysporum towards Radopholus similis activity in absence of banana. Commun Agric Appl Biol Sci 69:381–385PubMedGoogle Scholar
  147. Wong KH, Hynes MJ, Todd RB, Davis MA (2007) Transcriptional control of nmrA by the bZIP transcription factor MeaB reveals a new level of nitrogen regulation in Aspergillus nidulans. Mol Microbiol 66:534–551PubMedGoogle Scholar
  148. Wu HS, Liu DY, Bao W, Ying RR, Ou YH, Huo ZH, Li YF, Shen QR (2008a) Effects of vanillic acid on the growth and development of Fusarium oxysporum f. sp. niveum. Allelo J 22:111–122Google Scholar
  149. Wu HS, Raza W, Fan JQ, Sun YG, Bao W, Shen QR (2008b) Cinnamic acid inhibits growth but stimulates production of pathogenesis factors by in vitro cultures of Fusarium oxysporum f. sp. niveum. J Agric Food Chem 56:1316–1321PubMedGoogle Scholar
  150. Wu HS, Raza W, Liu DY, Wu CL, Mao ZS, Xu YC, Shen QR (2008c) Allelopathic impact of artificially applied coumarin on Fusarium oxysporum f. sp. niveum. World J Microbiol Biotechnol 24:1297–1304Google Scholar
  151. Young ET, Zhang C, Shokat KM, Parua PK, Braun KA (2012) The AMP-activated protein kinase Snf1 regulates transcription factor binding, RNA polymerase II activity, and mRNA stability of glucose-repressed genes in Saccharomyces cerevisiae. J Biol Chem 287:29021–29034PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Research School of BiologyAustralian National UniversityCanberraAustralia
  2. 2.Commonwealth Department of Health and AgeingOffice of the Gene Technology RegulatorCanberraAustralia
  3. 3.Australian Centre for Necrotrophic Fungal Pathogens, Department of Environment and AgricultureCurtin UniversityPerthAustralia

Personalised recommendations