Skip to main content

Trichoderma: Genomic Aspects of Mycoparasitism and Biomass Degradation

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 36))

Abstract

Species of Trichoderma (teleomorph Hypocrea, Hypocreales, Ascomycota, Dykaria) are among the most frequent mitosporic fungi commonly detected in cultivation-based surveys. They have been isolated from an innumerable diversity of natural and artificial substrata which demonstrates their high opportunistic potential and adaptability to various ecological conditions. Among hundreds of fungal genera, Trichoderma is one of those with the broadest impact on mankind: some Trichoderma species are applied in contemporary biotechnology due to their ability to produce enzymes for conversion of plant biomass into soluble sugars that can be used for biofuel production and other biorefinery processes. Others possess a profound ability to parasitize or even prey on other fungi, which is widely used to combat phytopathogenic fungi, and invertebrates. Still other species are facultative pathogens on mammals. The genomes of three Trichoderma spp. (T. reesei, T. atroviride, and T. virens) have so far been sequenced and analyzed. In this review, we will highlight the biological insights that were made possible from their genomic and transcriptomic analyses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In this review we accommodate the changes proposed at the International Botanical Congress in July 2011 for the International Code of Botanical Nomenclature and the ongoing discussion on the future single taxon name for Hypocrea/Trichoderma that may be followed at the website of the IUMS International Subcommission on Trichoderma taxonomy at http://www.isth.info/content.php?page_id=102. Therefore we use the single generic name Trichoderma not only for asexual species but also for holomorphs when the sexual stage is described. However at first mention of holomorphic species both teleomorph (Hypocrea) and anamorph (Trichoderma) names are given. When the whole genus of Trichoderma and Hypocrea spp. is considered, the term Trichoderma is applied.

References

  • Aghcheh RK, Druzhinina IS, Kubicek CP (2013) The putative protein methyltransferase LAE1 of Trichoderma atroviride is a key regulator of asexual development and mycoparasitism. PLoS One. doi:10.1371/journal.pone.0067144

    Google Scholar 

  • Akel E, Metz B, Seiboth B, Kubicek CP (2009) Molecular regulation of arabinan and L-arabinose metabolism in Hypocrea jecorina (Trichoderma reesei). Eukaryot Cell 8:1837–1844

    PubMed  CAS  Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829–1845

    PubMed  CAS  Google Scholar 

  • Arvas M, Pakula T, Smit B, Rautio J, Koivistoinen H, Jouhten P, Lindfors E, Wiebe M, Penttilä M, Saloheimo M (2011) Correlation of gene expression and protein production rate – a system wide study. BMC Genomics 12:616

    PubMed  CAS  Google Scholar 

  • Atanasova L, Jaklitsch WM, Komon-Zelazowska M, Kubicek CP, Druzhinina IS (2010) The clonal species Trichoderma parareesei sp. nov., likely resembles the ancestor of the cellulase producer Hypocrea jecorina/T. reesei. Appl Environ Microbiol 76:7259–7267

    PubMed  CAS  Google Scholar 

  • Atanasova L, Le Crom S, Gruber S, Coulpier F, Seidl-Seiboth V, Kubicek CP, Druzhinina IS (2012) Comparative transcriptomics reveals versatile strategies of Trichoderma mycoparasitism. BMC Genomics 14:121

    Google Scholar 

  • Atanasova L, Druzhinina IS, Jaklitsch WM (2013a) Two hundred Trichoderma species recognized based on molecular phylogeny. In: Mukherjee PK, Sigh US, Horwitz BA, Schmoll M, Mukherjee M (eds) Trichoderma: biology and applications. CABI, Wallingford, Oxon

    Google Scholar 

  • Atanasova L, Know BP, Kubicek CP, Druzhinina IS, Baker SE (2013) The Trichoderma reesei polyketide synthase gene PKS1 is necessary for conidial and perithecial color and environmental fitness Euk Cell, revised ms submitted

    Google Scholar 

  • Bailey BA, Bae H, Strem MD, Roberts DP, Thomas SE, Crozier J, Samuels GJ, Choi IY, Holmes KA (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224:1449–1464

    PubMed  CAS  Google Scholar 

  • Baker SE, Perrone G, Richardson NM, Gallo A, Kubicek CP (2012) Phylogenetic analysis and evolution of polyketide synthase encoding genes in Trichoderma. Microbiology 158:147–154

    PubMed  CAS  Google Scholar 

  • Bayry J, Aimanianda V, Guijarro JI, Sunde M, Latgé JP (2012) Hydrophobins—unique fungal proteins. PLoS Pathog 8:e1002700

    PubMed  CAS  Google Scholar 

  • Benítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    PubMed  Google Scholar 

  • Bisby GR (1939) Trichoderma viride Pers ex Fries, and notes on Hypocrea. Trans Br Mycol Soc 23:149–168

    Google Scholar 

  • Bischof R, Gamauf C, Schirrmacher G, Seiboth B, Kubicek CP (2013) Comparative analysis of the Trichoderma reesei transcriptome on the cellulase inducing substrates wheat straw and lactose. Biotechnol Biofuel (submitted for publication)

    Google Scholar 

  • Bissett J (1984) A revision of the genus Trichoderma I Sect Longibrachiatum sect nov. Can J Bot 62:924–931

    Google Scholar 

  • Bissett J (1991a) A revision of the genus Trichoderma II Infrageneric classification. Can J Bot 69:2357–2372

    Google Scholar 

  • Bissett J (1991b) A revision of the genus Trichoderma III Sect Pachybasium. Can J Bot 69:2373–2417

    Google Scholar 

  • Bissett J (1991c) A revision of the genus Trichoderma IV additional notes on section Longibrachiatum. Can J Bot 69:2418–2420

    Google Scholar 

  • Bissett J (1992) Trichoderma atroviride. Can J Bot 70:639–641

    Google Scholar 

  • Bonnarme P, Djian A, Latrasse A, Feron G, Ginies C, Durand A, Le Quere J-L (1997) Production of 6-pentyl-α-pyrone by Trichoderma sp. from vegetable oils. J Biotechnol 56:143–150

    CAS  Google Scholar 

  • Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    PubMed  Google Scholar 

  • Carreras-Villaseñor N, Sánchez-Arreguín JA, Herrera-Estrella AH (2012) Trichoderma: sensing the environment for survival and dispersal. Microbiology 158:3–16

    PubMed  Google Scholar 

  • Carter GL, Allison D, Rey MW, Dunn-Coleman NS (1992) Chromosomal and genetic analysis of the electrophoretic karyotype of Trichoderma reesei: mapping of the cellulase and xylanase genes. Mol Microbiol 6:2167–2174

    PubMed  CAS  Google Scholar 

  • Casas-Flores S, Herrera-Estrella A (2007) Antagonism of plant parasitic nematodes by fungi. In: Kubicek CP, Druzhinina IS (eds) Environmental and microbial relationships (Mycota IV). Springer, Heidelberg, pp 147–157

    Google Scholar 

  • Catalano V, Vergara M, Hauzenberger JR, Seiboth B, Sarrocco S, Vannacci G, Kubicek CP, Seidl-Seiboth V (2010) Use of a non-homologous end-joining-deficient strain (delta-ku70) of the biocontrol fungus Trichoderma virens to investigate the function of the laccase gene lcc1 in sclerotia degradation. Curr Genet 57:13–23

    PubMed  Google Scholar 

  • Cooney JM, Lauren DR, di Menna ME (2001) Impact of competitive fungi on trichothecene production by Fusarium graminearum. J Agric Food Chem 49:522–526

    PubMed  CAS  Google Scholar 

  • Corley DG, Miller-Wideman M, Durley RC (1994) Isolation and structure of harzianum A: a new trichothecene from Trichoderma harzianum. J Nat Prod 57:422–425

    PubMed  CAS  Google Scholar 

  • Dagenais TR, Keller NP (2009) Pathogenesis of Aspergillus fumigatus in Invasive Aspergillosis. Clin Microbiol Rev 22:447–465

    PubMed  CAS  Google Scholar 

  • De Jaeger N, Declerck S, de la Providencia IE (2010) Mycoparasitism of arbuscular mycorrhizal fungi: a pathway for the entry of saprotrophic fungi into roots. FEMS Microbiol Ecol 73:312–322

    PubMed  Google Scholar 

  • Degenkolb T, Karimi AR, Dieckmann R, Neuhof T, Baker SE, Druzhinina IS, Kubicek CP, Brückner H, von Döhren H (2012) The production of multiple small peptaibol families by single 14-module Peptide synthetases in Trichoderma/Hypocrea. Chem Biodivers 9:499–535

    PubMed  CAS  Google Scholar 

  • Djonovic S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant Microbe Interact 19:838–853

    PubMed  CAS  Google Scholar 

  • Djonovic S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889

    PubMed  CAS  Google Scholar 

  • Druzhinina IS, Koptchinskiy A, Kubicek CP (2006) The first one hundred Trichoderma species characterized by molecular data. Mycoscience 47:55–64

    CAS  Google Scholar 

  • Druzhinina IS, Komoń-Zelazowska M, Kredics L, Hatvani L, Antal Z, Belayneh T, Kubicek CP (2008) Different reproductive strategies of Hypocrea orientalis and genetically close but clonal Trichoderma longibrachiatum, both capable to cause invasive mycoses of humans. Microbiology 154:3447–3459

    PubMed  CAS  Google Scholar 

  • Druzhinina IS, Komon-Zelazowska M, Atanasova L, Seidl V, Kubicek CP (2010a) Evolution and ecophysiology of an industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLoS One 5:e9191

    PubMed  Google Scholar 

  • Druzhinina IS, Kubicek CP, Komoń-Zelazowska M, Mulaw TB, Bissett J (2010b) The Trichoderma harzianum demon: complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages. BMC Evol Biol 10:94

    PubMed  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 16:749–759

    Google Scholar 

  • Druzhinina IS, Shelest E, Kubicek CP (2012) Novel traits of Trichoderma predicted through the analysis of its secretome. FEMS Microbiol Lett 337:1–9

    PubMed  CAS  Google Scholar 

  • Duclohier H (2007) Peptaibiotics and peptaibols: an alternative to classical antibiotics? Chem Biodivers 4:1023–1026

    PubMed  CAS  Google Scholar 

  • Espino-Rammer L, Ribitsch D, Przylucka A, Marold A, Greimel KJ, Herrero Acero E, Guebitz GM, Kubicek CP, Druzhinina IS (2013) The two novel class II hydrophobins of Trichoderma stimulate enzymatic hydrolysis of poly(ethylene terephthalate). Appl Environ Microbiol 79(14):4230–4238

    PubMed  CAS  Google Scholar 

  • Eveleigh DE, Montenecourt BS (1979) Increasing yields of extracellular enzymes. Adv Appl Microbiol 25:57–74

    PubMed  CAS  Google Scholar 

  • Fedorova ND, Badger JH, Robson GD, Wortman JR, Nierman WC (2005) Comparative analysis of programmed cell death pathways in filamentous fungi. BMC Genomics 6:177

    PubMed  Google Scholar 

  • Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ, Crabtree J, Silva JC, Badger JH, Albarraq A, Angiuoli S, Bussey H, Bowyer P, Cotty PJ, Dyer PS, Egan A, Galens K, Fraser-Liggett CM, Haas BJ, Inman JM, Kent R, Lemieux S, Malavazi I, Orvis J, Roemer T, Ronning CM, Sundaram JP, Sutton G, Turner G, Venter JC, White OR, Whitty BR, Youngman P, Wolfe KH, Goldman GH, Wortman JR, Jiang B, Denning DW, Nierman WC (2008) Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 4:e1000046

    PubMed  Google Scholar 

  • Friedl MA, Kubicek CP, Druzhinina IS (2008) Carbon source dependence of conidiation and its photostimulation in Hypocrea atroviridis. Appl Environ Microbiol 74:245–250

    PubMed  CAS  Google Scholar 

  • Friedl MA, Druzhinina IS (2012) Taxon-specific metagenomics of Trichoderma reveals a narrow community of opportunistic species that regulate each other’s development. Microbiology 158:69–83

    PubMed  CAS  Google Scholar 

  • Gardiner DM, Waring P, Howlett BJ (2005) The epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis. Microbiology 151:1021–1032

    PubMed  CAS  Google Scholar 

  • Geysens S, Pakula T, Uusitalo J, Dewerte I, Penttilä M, Contreras R (2005) Cloning and characterization of the glucosidase II alpha subunit gene of Trichoderma reesei: a frameshift mutation results in the aberrant glycosylation profile of the hypercellulolytic strain Rut-C30. Appl Environ Microbiol 71:2910–2924

    PubMed  CAS  Google Scholar 

  • Gibson DM, King BC, Hayes ML, Bergstrom GC (2011) Plant pathogens as a source of diverse enzymes for lignocellulose digestion. Curr Opin Microbiol 14:264–270

    PubMed  CAS  Google Scholar 

  • Godtfredsen WO, Vangedal S (1965) Trichodermin, a new sesquiterpene antibiotic. Acta Chem Scand 19:1088–1102

    PubMed  CAS  Google Scholar 

  • Grinyer J, Hunt S, McKay M, Herbert BR, Nevalainen H (2005) Proteomic response of the biological control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani. Curr Genet 47:381–388

    PubMed  CAS  Google Scholar 

  • Guangtao Z, Hartl L, Schuster A, Polak S, Schmoll M, Wang T, Seidl V, Seiboth B (2009) Gene targeting in a nonhomologous end joining deficient Hypocrea jecorina. J Biotechnol 139:146–151

    PubMed  CAS  Google Scholar 

  • Häkkinen M, Arvas M, Oja M, Aro N, Penttilä M, Saloheimo M, Pakula TM (2012) Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microb Cell Fact 11:134

    PubMed  Google Scholar 

  • Hanada RE, de Jorge ST, Pomella AW, Hebbar KP, Pereira JO, Ismaiel A, Samuels GJ (2008) Trichoderma martiale sp. nov, a new endophyte from sapwood of Theobroma cacao with a potential for biological control. Mycol Res 112:1335–1343

    PubMed  CAS  Google Scholar 

  • Hanada RE, Pomella AW, Costa HS, Bezerra JL, Loguercio LL, Pereira JO (2010) Endophytic fungal diversity in Theobroma cacao (cacao) and T. grandiflorum (cupuaçu) trees and their potential for growth promotion and biocontrol of black-pod disease. Fungal Biol 114:901–910

    PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    PubMed  CAS  Google Scholar 

  • Hartl L, Seiboth B (2005) Sequential gene deletions in Hypocrea jecorina using a single blaster cassette. Curr Genet 48:204–211

    PubMed  CAS  Google Scholar 

  • Hernández-Oñate MA, Esquivel-Naranjo EU, Mendoza-Mendoza A, Stewart A, Herrera-Estrella AH (2012) An injury-response mechanism conserved across kingdoms determines entry of the fungus Trichoderma atroviride into development. Proc Natl Acad Sci USA 109(37):14918–14923

    PubMed  Google Scholar 

  • Herrera-Estrella A, Goldman GH, van Montagu M, Geremia RA (1993) Electrophoretic karyotype and gene assignment to resolved chromosomes of Trichoderma spp. Mol Microbiol 7:515–521

    PubMed  CAS  Google Scholar 

  • Ihrmark K, Asmail N, Ubhayasekera W, Melin P, Stenlid J, Karlsson M (2010) Comparative molecular evolution of Trichoderma chitinases in response to mycoparasitic interactions. Evol Bioinform Online 6:1–26

    PubMed  CAS  Google Scholar 

  • Ilmen M, Thrane C, Penttilä M (1996) The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full-length and a truncated mutant form. Mol Gen Genet 251:451–460

    PubMed  CAS  Google Scholar 

  • Ivanova C, Baath J, Seiboth B, Kubicek CP (2013) Systems analysis of lactose metabolism in Trichoderma reesei identifies a lactose permease that is essential for cellulase induction. PLoS One 8(5):e62631

    PubMed  CAS  Google Scholar 

  • Jaklitsch WM (2009) European species of Hypocrea Part I. The green-spored species. Stud Mycol 63:1–91

    PubMed  Google Scholar 

  • Jaklitsch WM (2011) European species of Hypocrea part II: species with hyaline ascospores. Fungal Divers 48:1–250

    PubMed  Google Scholar 

  • Jaklitsch WM, Samuels GJ, Dodd SL, Lu BS, Druzhinina IS (2006) Hypocrea rufa/Trichoderma viride: a reassessment, and description of five closely related species with and without warted conidia. Stud Mycol 56:135–177

    PubMed  Google Scholar 

  • Karimi-Aghcheh R, Bok JW, Phatale PA, Smith KM, Baker SE, Lichius A, Omann M, Zeilinger S, Seiboth B, Rhee C, Keller NP, Freitag M, Kubicek CP (2012) Functional analyses of Trichoderma reesei LAE1 reveal conserved and contrasting roles of this regulator. G3 (Bethesda) 3(2):369–378

    Google Scholar 

  • Kim CS, Shirouzu T, Nakagiri A, Sotome K, Nagasawa E, Maekawa N (2012) Trichoderma mienum sp nov, isolated from mushroom farms in Japan. Antonie Van Leeuwenhoek 102(4):629–641

    PubMed  CAS  Google Scholar 

  • Klein D, Eveleigh DE (1998) Ecology of Trichoderma. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium, vol 1. Taylor and Francis, London, pp 57–69

    Google Scholar 

  • Komoń-Zelazowska M, Bissett J, Zafari D, Hatvani L, Manczinger L, Woo S, Lorito M, Kredics L, Kubicek CP, Druzhinina IS (2007) Genetically closely related but phenotypically divergent Trichoderma species cause world-wide green mould disease in oyster mushroom farms. Appl Environ Microbiol 73:7415–7426

    PubMed  Google Scholar 

  • Kredics L, Antal Z, Szekeres A, Manczinger L, Dóczi I, Kevei F, Nagy E (2004) Production of extracellular proteases by human pathogenic Trichoderma longibrachiatum strains. Acta Microbiol Immunol Hung 51:283–295

    PubMed  CAS  Google Scholar 

  • Kredics L, Hatvani L, Manczinger L, Vágvölgyi C, Antal Z (2011) Trichoderma. In: Liu D (ed) Molecular detection of human fungal pathogens. CRC, Boca Raton, FL, pp 509–526

    Google Scholar 

  • Kubicek CP (2012) Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J Biotechnol 163:133–142

    PubMed  Google Scholar 

  • Kubicek CP, Baker S, Gamauf C, Kenerley CM, Druzhinina IS (2008) Purifying selection and birth-and-death evolution in the class II hydrophobin gene families of the ascomycete Trichoderma/Hypocrea. BMC Evol Biol 8:4

    PubMed  Google Scholar 

  • Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B (2009) Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels 2:19

    PubMed  Google Scholar 

  • Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M, Kredics L, Alcaraz LD, Aerts A, Antal Z, Atanasova L, Cervantes-Badillo MG, Challacombe J, Chertkov O, McCluskey K, Coulpier F, Deshpande N, von Döhren H, Ebbole DJ, Esquivel-Naranjo EU, Fekete E, Flipphi M, Glaser F, Gómez-Rodríguez EY, Gruber S, Han C, Henrissat B, Hermosa R, Hernández-Oñate M, Karaffa L, Kosti I, Le Crom S, Lindquist E, Lucas S, Lübeck M, Lübeck PS, Margeot A, Metz B, Misra M, Nevalainen H, Omann M, Packer N, Perrone G, Uresti-Rivera EE, Salamov A, Schmoll M, Seiboth B, Shapiro H, Sukno S, Tamayo-Ramos JA, Tisch D, Wiest A, Wilkinson HH, Zhang M, Coutinho PM, Kenerley CM, Monte E, Baker SE, Grigoriev IV (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40

    PubMed  CAS  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391

    PubMed  CAS  Google Scholar 

  • Latgé JP (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290

    PubMed  Google Scholar 

  • Le Crom S, Schackwitz W, Pennacchio L, Magnuson JK, Culley DE, Collett JR, Martin J, Druzhinina IS, Mathis H, Monot F, Seiboth B, Cherry B, Rey M, Berka R, Kubicek CP, Baker SE, Margeot A (2009) Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proc Natl Acad Sci USA 106:16151–16156

    PubMed  Google Scholar 

  • Lehner SM, Atanasova L, Neumann NK, Krska R, Lemmens M, Druzhinina IS, Schuhmacher R (2013) Isotope-assisted screening for iron-containing metabolites reveals a high degree of diversity among known and unknown siderophores produced by Trichoderma spp. Appl Environ Microbiol 79:18–31

    PubMed  CAS  Google Scholar 

  • Leitgeb B, Szekeres A, Manczinger L, Vágvölgyi C, Kredics L (2007) The history of alamethicin: a review of the most extensively studied peptaibol. Chem Biodivers 4:1027–1051

    PubMed  CAS  Google Scholar 

  • Lewis JA, Papavizas GC (1984) A new approach to stimulate population proliferation of Trichoderma species and other potential biocontrol fungi introduced into natural soils. Phytopathology 74:1240–1244

    Google Scholar 

  • Lim YW, Kim BK, Kim C, Jung HS, Kim BS, Lee JH, Chun J (2010) Assessment of soil fungal communities using pyrosequencing. J Microbiol 48:284–289

    PubMed  Google Scholar 

  • Lumsden RD, Locke JC, Adkins ST, Walter JF, Ridout CJ (1992) Isolation and localization of the antibiotic gliotoxin produced by Gliocladium virens from alginate prill in soil and soilless media. Phytopathology 82:230–235

    CAS  Google Scholar 

  • Mandels M, Weber J, Parizek R (1971) Enhanced cellulase production by a mutant of Trichoderma viride. Appl Microbiol 21:152–154

    PubMed  CAS  Google Scholar 

  • Mäntylä AL, Rossi KH, Vanhanen SA, Penttilä ME, Suominen PL, Nevalainen KM (1992) Electrophoretic karyotyping of wild-type and mutant Trichoderma longibrachiatum (reesei) strains. Curr Genet 21:471–477

    PubMed  Google Scholar 

  • Marra R, Ambrosino P, Carbone V, Vinale F, Woo SL, Ruocco M, Ciliento R, Lanzuise S, Ferraioli S, Soriente I, Gigante S, Turrà D, Fogliano V, Scala F, Lorito M (2007) Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr Genet 50:307–321

    Google Scholar 

  • Martin F, Aerts A, Ahrén D, Brun A, Danchin EG, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buée M, Brokstein P, Canbäck B, Cohen D, Courty PE, Coutinho PM, Delaruelle C, Detter JC, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Grimwood J, Hoegger PJ, Jain P, Kilaru S, Labbé J, Lin YC, Legué V, Le Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Oudot-Le Secq MP, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kües U, Lucas S, Van de Peer Y, Podila GK, Polle A, Pukkila PJ, Richardson PM, Rouzé P, Sanders IR, Stajich JE, Tunlid A, Tuskan G, Grigoriev IV (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    PubMed  CAS  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequence analysis of the cellulolytic fungus Trichoderma reesei (syn Hypocrea jecorina) reveals a surprisingly limited inventory of carbohydrate active enzymes. Nat Biotechnol 26:553–560

    PubMed  CAS  Google Scholar 

  • McCormick SP, Stanley AM, Stover NA, Alexander NJ (2011) Trichothecenes: from simple to complex mycotoxins. Toxins (Basel) 3:802–814

    CAS  Google Scholar 

  • Metz B, Seidl-Seiboth V, Haarmann T, Kopchinskiy A, Lorenz P, Seiboth B, Kubicek CP (2011) Expression of biomass-degrading enzymes is a major event during conidium development in Trichoderma reesei. Eukaryot Cell 10:1527–1735

    PubMed  CAS  Google Scholar 

  • Moran-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutiérrez S, Lorito M, Monte E (2009) The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum-plant beneficial interaction. Mol Plant Microbe Interact 22:1021–1031

    PubMed  CAS  Google Scholar 

  • Mukherjee M, Horwitz BA, Sherkhane PD, Hadar R, Mukherjee PK (2006) A secondary metabolite biosynthesis cluster in Trichoderma virens: evidence from analysis of genes underexpressed in a mutant defective in morphogenesis and antibiotic production. Curr Genet 50:193–202

    PubMed  CAS  Google Scholar 

  • Mukherjee PK, Wiest A, Ruiz N, Keightley A, Moran-Diez ME, McCluskey K, Pouchus YF, Kenerley CM (2011) Two classes of new peptaibols are synthesized by a single non-ribosomal peptide synthetase of Trichoderma virens. J Biol Chem 286:4544–4554

    PubMed  CAS  Google Scholar 

  • Mukherjee PK, Buensanteai N, Moran-Diez ME, Druzhinina IS, Kenerley CM (2012a) Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in the induced systemic resistance response in maize. Microbiology 158:155–165

    PubMed  CAS  Google Scholar 

  • Mukherjee PK, Horwitz BA, Kenerley CM (2012b) Secondary metabolism in Trichoderma – a genomic perspective. Microbiology 158:35–45

    PubMed  CAS  Google Scholar 

  • Nemcovic M, Jakubíková L, Víden I, Farkas V (2008) Induction of conidiation by endogenous volatile compounds in Trichoderma spp. FEMS Microbiol Lett 284:231–236

    PubMed  CAS  Google Scholar 

  • Nielsen KF, Gräfenhan T, Zafari D, Thrane U (2005) Trichothecene production by Trichoderma brevicompactum. J Agric Food Chem 53:8190–8196

    PubMed  CAS  Google Scholar 

  • Omann M, Zeilinger S (2010) How a mycoparasite employs G-protein signaling: using the example of Trichoderma. J Signal Transduct 2010:123126

    PubMed  Google Scholar 

  • Paoletti M, Saupe SJ (2009) Fungal incompatibility: evolutionary origin in pathogen defense? Bioessays 31:1201–1210

    PubMed  CAS  Google Scholar 

  • Patron NJ, Waller RF, Cozijnsen AJ, Straney DC, Gardiner DM, Nierman WC, Howlett BJ (2007) Origin and distribution of epipolythiodioxopiperazine (ETP) gene clusters in filamentous ascomycetes. BMC Evol Biol 7:174

    PubMed  Google Scholar 

  • Pazzagli L, Pantera B, Carresi L, Zoppi C, Pertinhez TA, Spisni A, Tegli S, Scala A, Cappugi G (2006) Cerato-platanin, the first member of a new fungal protein family: cloning, expression, and characterization. Cell Biochem Biophys 44:512–521

    PubMed  CAS  Google Scholar 

  • Persoon CH (1794) Disposita methodical fungorum. Römers Neues Mag Bot 1:81–128

    Google Scholar 

  • Plett JM, Kemppainen M, Kale SD, Kohler A, Legué V, Brun A, Tyler BM, Pardo AG, Martin F (2011) A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr Biol 21:1197–1203

    PubMed  CAS  Google Scholar 

  • Portnoy T, Margeot A, Le Crom S, Linke R, Atanasova L, Fekete E, Sándor E, Karaffa L, Druzhinina IS, Seiboth B, Kubicek CP (2011a) The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics 12:269

    PubMed  CAS  Google Scholar 

  • Portnoy T, Margeot A, Seidl V, Le Crom S, Ben Chaabane F, Linke R, Seiboth B, Kubicek CP (2011b) Differential regulation of the cellulase transcription factors XYR1, ACE2, and ACE1 in Trichoderma reesei strains producing high and low levels of cellulase. Eukaryot Cell 10:262–271

    PubMed  CAS  Google Scholar 

  • Rebuffat C, Goulard B, Bodo G, Roquebert MF (1999) The peptaibol antibiotics from Trichoderma soil fungi; structural diversity and membrane properties. Recent Res Devel Org Bioorg Chem 3:65–91

    CAS  Google Scholar 

  • Reino JL, Guerrero RF, Hernández-Galan R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7:89–123

    CAS  Google Scholar 

  • Reithner B, Brunner K, Schuhmacher R, Peissl I, Seidl V, Krska R, Zeilinger S (2005) The G protein alpha subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol 42:749–760

    PubMed  CAS  Google Scholar 

  • Reithner B, Schuhmacher R, Stoppacher N, Pucher M, Brunner K, Zeilinger S (2007) Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol 44:1123–1133

    PubMed  CAS  Google Scholar 

  • Reithner B, Ibarra-Laclette E, Mach RL, Herrera-Estrella A (2011) Identification of mycoparasitism-related genes in Trichoderma atroviride. Appl Environ Microbiol 77:4361–4370

    PubMed  CAS  Google Scholar 

  • Rep M (2005) Small proteins of plant-pathogenic fungi secreted during host colonization. FEMS Microbiol Letts 253:19–27

    CAS  Google Scholar 

  • Rifai MA (1969) A revision of the genus Trichoderma. Mycol Pap 116:1–56

    Google Scholar 

  • Rubio MB, Domínguez S, Monte E, Hermosa R (2012) Comparative study of Trichoderma gene expression in interactions with tomato plants using high-density oligonucleotide microarrays. Microbiology 158:119–128

    PubMed  CAS  Google Scholar 

  • Samolski I, de Luis A, Vizcaíno JA, Monte E, Suárez MB (2009) Gene expression analysis of the biocontrol fungus Trichoderma harzianum in the presence of tomato plants, chitin, or glucose using a high-density oligonucleotide microarray. BMC Microbiol 9:217

    PubMed  Google Scholar 

  • Samuels GJ (2006) Trichoderma: a review of biology and systematics of the genus. Mycol Res 100:923–935

    Google Scholar 

  • Samuels GJ, Dodd SL, Gams W, Castlebury LA, Petrini O (2002) Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 94:146–170

    PubMed  Google Scholar 

  • Samuels GJ, Suarez C, Solis K, Holmes KA, Thomas SE, Ismaiel A, Evans HC (2006) Trichoderma theobromicola and T. paucisporum: two new species isolated from cacao in South America. Mycol Res 110:381–392

    PubMed  Google Scholar 

  • Samuels GJ, Ismaiel A, Bon MC, De Respinis S, Petrini O (2010) Trichoderma asperellum sensu lato consists of two cryptic species. Mycologia 102:944–966

    PubMed  CAS  Google Scholar 

  • Schmoll M, Esquivel-Naranjo EU, Herrera-Estrella A (2010) Trichoderma in the light of day–physiology and development. Fungal Genet Biol 47:909–916

    PubMed  CAS  Google Scholar 

  • Schmoll M, Tian C, Sun J, Tisch D, Glass NL (2012) Unravelling the molecular basis for light modulated cellulase gene expression - the role of photoreceptors in Neurospora crassa. BMC Genomics. doi:10.1186/1471-2164-13-127

    PubMed  Google Scholar 

  • Scholtmeijer K, Janssen MI, van Leeuwen MB, van Kooten TG, Hektor H, Wösten HAB (2004) The use of hydrophobins to functionalize surfaces. Biomed Mater Eng 14:447–454

    PubMed  CAS  Google Scholar 

  • Schrettl M, Carberry S, Kavanagh K, Haas H, Jones GW, O’Brien J, Nolan A, Stephens J, Fenelon O, Doyle S (2010) Self-protection against gliotoxin—a component of the gliotoxin biosynthetic cluster, GliT, completely protects Aspergillus fumigatus against exogenous gliotoxin. PLoS Pathog 6:e1000952

    PubMed  Google Scholar 

  • Seaby D (1998) Trichoderma as a weed and pathogen in mushroom cultivation. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol 2, Enzymes, biological control and commercial applications. Taylor and Francis, London, pp 267–283

    Google Scholar 

  • Seiboth B, Aghcheh RK, Phatale PA, Linke R, Sauer DG, Hartl L, Smith KM, Baker SE, Freitag M, Kubicek CP (2012) The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei. Mol Microbiol 84:1150–1164

    PubMed  CAS  Google Scholar 

  • Seidl V (2008) Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biol Rev 22:36–42

    Google Scholar 

  • Seidl V, Gamauf C, Druzhinina IS, Hartl L, Seiboth B, Kubicek CP (2008) The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome. BMC Genomics 9:327

    PubMed  Google Scholar 

  • Seidl V, Seibel C, Kubicek CP, Schmoll M (2009a) Sexual development in the industrial workhorse Trichoderma reesei. Proc Natl Acad Sci USA 106:13909–13914

    PubMed  CAS  Google Scholar 

  • Seidl V, Song LF, Lindquist EA, Gruber S, Koptchinskiy A, Zeilinger S, Schmoll M, Martinez P, Sun J, Grigoriev I, Herrera-Estrella A, Baker SE, Kubicek CP (2009b) Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the close presence of a fungal prey. BMC Genomics 10:567

    PubMed  Google Scholar 

  • Seidl V, Gruber S, Sezerman U, Schwecke T, Albayrak A, Neuhof T, von Döhren H, Baker SE, Kubicek CP (2011) Novel hydrophobins from Trichoderma define a new hydrophobin subclass: protein properties, evolution, regulation, and processing. J Mol Evol 72:339–351

    Google Scholar 

  • Selker EU (1990) Premeiotic instability of repeated sequences in Neurospora crassa. Annu Rev Genet 24:579–613

    PubMed  CAS  Google Scholar 

  • Serrano-Carreon L, Hathout Y, Bensoussan M, Belin JM (1993) Metabolism of linoleic acid or mevalonate and 6-pentyl-α-pyrone biosynthesis by Trichoderma species. Appl Environ Microbiol 59:2945–2950

    PubMed  CAS  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    PubMed  CAS  Google Scholar 

  • Sivasithamparam K, Ghisalberti EL (1998) Secondary metabolism in Trichoderma and Gliocladium. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium, vol 1, Basic biology, taxonomy and genetics. Taylor and Francis, London, pp 139–191

    Google Scholar 

  • Steiger MG, Vitikainen M, Uskonen P, Brunner K, Adam G, Pakula T, Penttilä M, Saloheimo M, Mach RL, Mach-Aigner AR (2011) Transformation system for Hypocrea jecorina (Trichoderma reesei) that favors homologous integration and employs reusable bidirectionally selectable markers. Appl Environ Microbiol 77:114–121

    PubMed  CAS  Google Scholar 

  • Steyaert JM, Weld RJ, Mendoza-Mendoza A, Stewart A (2010) Reproduction without sex: conidiation in the filamentous fungus Trichoderma. Microbiology 156:2887–2900

    PubMed  CAS  Google Scholar 

  • Stoppacher N, Zeilinger S, Omann M, Lassahn PG, Roitinger A, Krska R, Schuhmacher R (2008) Characterisation of the peptaibiome of the biocontrol fungus Trichoderma atroviride by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 22:1889–1898

    PubMed  CAS  Google Scholar 

  • Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R (2010) Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbiol Methods 81:187–193

    PubMed  CAS  Google Scholar 

  • Stricker AR, Grosstessner-Hain K, Würleitner E, Mach RL (2006) Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot Cell 5:2128–2137

    PubMed  CAS  Google Scholar 

  • Suárez MB, Sanz L, Chamorro MI, Rey M, González FJ, Llobell A, Monte E (2006) Proteomic analysis of secreted proteins from Trichoderma harzianum identification of a fungal cell wall-induced aspartic protease. Fungal Genet Biol 42:924–934

    Google Scholar 

  • Susi P, Aktuganov G, Himanen J, Korpela T (2011) Biological control of wood decay against fungal infection. J Environ Manage 92:1681–1689

    PubMed  Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32

    PubMed  CAS  Google Scholar 

  • Tejesvi MV, Mahesh B, Nalini MS, Prakash HS, Kini KR, Subbiah V, Shetty HS (2006) Fungal endophyte assemblages from ethnopharmaceutically important medicinal trees. Can J Microbiol 52:427–435

    PubMed  CAS  Google Scholar 

  • Tisch D, Kubicek CP, Schmoll M (2012) The phosducin-like protein PhLP1 impacts regulation of glycoside hydrolases and light response in Trichoderma reesei. BMC Genomics 12:613

    Google Scholar 

  • Ueno Y (1985) The toxicology of mycotoxins. Crit Rev Toxicol 14:99–132

    PubMed  CAS  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10

    CAS  Google Scholar 

  • Viterbo A, Ramot O, Chemin L, Chet I (2002) Significance of lytic enzymes from Trichoderma spp in the biocontrol of fungal plant pathogens. Antonie Van Leeuwenhoek 81:549–556

    PubMed  CAS  Google Scholar 

  • Viterbo A, Harel M, Horwitz BA, Chet I, Mukherjee PK (2005) Trichoderma mitogen-activated protein kinase signaling is involved in induction of plant systemic resistance. Appl Environ Microbiol 71:6241–6246

    PubMed  CAS  Google Scholar 

  • Viterbo A, Wiest A, Brotman Y, Chet I, Kenerley CM (2007) The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol Plant Pathol 8:737–746

    PubMed  CAS  Google Scholar 

  • Vitikainen M, Arvas M, Pakula T, Oja M, Penttilä M, Saloheimo M (2010) Array comparative genomic hybridization analysis of Trichoderma reesei strains with enhanced cellulase production properties. BMC Genomics 11:441

    PubMed  Google Scholar 

  • Walker T, Klasson L, Sebaihia M, Sanders MJ, Thomson NR, Parkhill J, Sinkins SP (2007) Ankyrin repeat domain-encoding genes in the wPip strain of Wolbachia from the Culex pipiens group. BMC Biol 5:39

    PubMed  Google Scholar 

  • Wannemacher RW, Winer SL (1977) Trichothecene mycotoxins. In: Sidell RR, Takafuji ET, Franz DR (eds) Medical aspects of chemical and biological warfare. Office of the Surgeon General at TMM Publications, Washington, DC, pp 655–676

    Google Scholar 

  • Watts R, Dahiya J, Chaudhary K, Tauro P (1988) Isolation and characterization of a new antifungal metabolite of Trichoderma reesei. Plant Soil 107:81–84

    CAS  Google Scholar 

  • Zeilinger S, Haller M, Mach R, Kubicek CP (2000) Molecular characterization of a cellulase-negative mutant of Hypocrea jecorina. Biochem Biophys Res Commun 277:581–588

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Genome sequencing and analysis were supported by the Office of Science of the US Department of Energy under contract number DE-AC02-05CH11231. The authors own work on this topic was supported by grants from the Austrian Science Fund P-17895 to I.S.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian P. Kubicek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kubicek, C.P., Druzhinina, I.S. (2013). Trichoderma: Genomic Aspects of Mycoparasitism and Biomass Degradation. In: Horwitz, B., Mukherjee, P., Mukherjee, M., Kubicek, C. (eds) Genomics of Soil- and Plant-Associated Fungi. Soil Biology, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39339-6_6

Download citation

Publish with us

Policies and ethics