Aspergillus: Genomics of a Cosmopolitan Fungus

  • Isabelle Benoit
  • Iran Malavazi
  • Gustavo Henrique Goldman
  • Scott E. Baker
  • Ronald P. de VriesEmail author
Part of the Soil Biology book series (SOILBIOL, volume 36)


The global presence, high potential for industrial applications, and medical significance of the ascomycete fungal genus Aspergillus have made this one of the best studied group of fungi with a scientific community that is in size second only to yeast in fungal research. Genomic resources for Aspergillus were among the first to become available in fungal research and after a period of little development have recently again been pushed to the forefront of fungal genomics.

These resources have provided detailed insights into a broad range of biological aspects of the life, pathogenicity, and applications of Aspergilli, enabling researchers to move toward a systems biology approach in understanding its biology. In this chapter, we will describe the development and current status of Aspergillus genomics. In addition, we will highlight three areas of Aspergillus research, plant biomass utilization, signal transduction, and secondary metabolism, as examples of what the genomic era has brought to the field.


Histidine Kinase Aspergillus Species Joint Genome Institute Cell Wall Integrity Conidium Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



GHG and IM were supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).


  1. Abe K, Furukawa K, Fujioka T, Hagiwara D, Maeda H, Marui J, Mizutani O, Takahashi T, Yoshimi A, Yamagata Y, Gomi K, Hasegawa F (2010) Novel industrial applications of Aspergillus oryzae Genomics. In: Gomi K, Machida M (eds) Aspergillus: molecular biology and genomics. Caister Academic, NorfolkGoogle Scholar
  2. Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, Rothrock J, Lopez M, Joshua H, Harris E, Patchett A, Monaghan R, Currie S, Stapley E, Albers-Schonberg G, Hensens O, Hirshfield J, Hoogsteen K, Liesch J, Springer J (1980) Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci USA 77:3957–3961PubMedGoogle Scholar
  3. Albrecht D, Kniemeyer O, Mech F, Gunzer M, Brakhage A, Guthke R (2011) On the way toward systems biology of Aspergillus fumigatus infection. Int J Med Microbiol 301:453–459PubMedGoogle Scholar
  4. Andersen MR, Lehmann L, Nielsen J (2009) Systemic analysis of the response of Aspergillus niger to ambient pH. Genome Biol 10:R47PubMedGoogle Scholar
  5. Andersen MR, Salazar MP, Schaap PJ, van de Vondervoort PJ, Culley D, Thykaer J, Frisvad JC, Nielsen KF, Albang R, Albermann K, Berka RM, Braus GH, Braus-Stromeyer SA, Corrochano LM, Dai Z, van Dijck PW, Hofmann G, Lasure LL, Magnuson JK, Menke H, Meijer M, Meijer SL, Nielsen JB, Nielsen ML, van Ooyen AJ, Pel HJ, Poulsen L, Samson RA, Stam H, Tsang A, van den Brink JM, Atkins A, Aerts A, Shapiro H, Pangilinan J, Salamov A, Lou Y, Lindquist E, Lucas S, Grimwood J, Grigoriev IV, Kubicek CP, Martinez D, van Peij NN, Roubos JA, Nielsen J, Baker SE (2011) Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res 21:885–897PubMedGoogle Scholar
  6. Andersen MR, Giese M, Vries PRD, Nielsen J (2012) Mapping the polysaccharide degradation potential of Aspergillus niger. BMC Genomics 13:313PubMedGoogle Scholar
  7. Appleby JL, Parkinson JS, Bourret RB (1996) Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell 86:845–848PubMedGoogle Scholar
  8. Arakawa M, Someno T, Kawada M, Ikeda D (2008) A new terrein glucoside, a novel inhibitor of angiogenin secretion in tumor angiogenesis. J Antibiot 61:442–448PubMedGoogle Scholar
  9. Arnaud MB, Cerqueira GC, Inglis DO, Skrzypek MS, Binkley J, Chibucos MC, Crabtree J, Howarth C, Orvis J, Shah P, Wymore F, Binkley G, Miyasato SR, Simison M, Sherlock G, Wortman JR (2012) The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Res 40:D653–D659PubMedGoogle Scholar
  10. Asao T, Buchi G, Abdel-Kader MM, Chang SB, Wick EL, Wogan GN (1963) Aflatoxins B and G. J Am Chem Soc 85:1706–1707Google Scholar
  11. Atoui A, Bao D, Kaur N, Grayburn WS, Calvo AM (2008) Aspergillus nidulans natural product biosynthesis is regulated by mpkB, a putative pheromone response mitogen-activated protein kinase. Appl Environ Microbiol 74:3596–3600PubMedGoogle Scholar
  12. Bahn YS (2008) Master and commander in fungal pathogens: the two-component system and the HOG signaling pathway. Eukaryot Cell 7:2017–2036PubMedGoogle Scholar
  13. Baker SE (2006) Aspergillus niger genomics: past, present and into the future. Med Mycol 44(Suppl 1):S17–S21PubMedGoogle Scholar
  14. Baker SE (2008) Aspergillus genomics and DHN-melanin conidial pigmentation. In: Varga J, Samson RA (eds) Aspergillus in the genomic era. Wageningen Academic, Wageningen, pp 73–85Google Scholar
  15. Banuett F (1998) Signalling in the yeasts: an informational cascade with links to the filamentous fungi. Microbiol Mol Biol Rev 62:249–274PubMedGoogle Scholar
  16. Bardwell L (2005) A walk-through of the yeast mating pheromone response pathway. Peptides 26:339–350PubMedGoogle Scholar
  17. Battaglia E, Hansen SF, Leendertse A, Madrid S, Mulder H, Nikolaev I, de Vries RP (2011) Regulation of pentose utilisation by AraR, but not XlnR, differs in Aspergillus nidulans and Aspergillus niger. Appl Microbiol Biotechnol 91:387–397PubMedGoogle Scholar
  18. Bayram O, Braus GH (2012) Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36:1–24PubMedGoogle Scholar
  19. Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506PubMedGoogle Scholar
  20. Bayram O, Bayram OS, Ahmed YL, Maruyama J, Valerius O, Rizzoli SO, Ficner R, Irniger S, Braus GH (2012) The Aspergillus nidulans MAPK module AnSte11-Ste50-Ste7-Fus3 controls development and secondary metabolism. PLoS Genet 8:e1002816PubMedGoogle Scholar
  21. Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516PubMedGoogle Scholar
  22. Benoit I, Navarro D, Marnet N, Rakotomanomana N, Lesage-Meessen L, Sigoillot J-C, Asther M, Asther M (2006) Feruloyl esterases as a tool for the release of phenolic compounds from agro-industrial by-products. Carbohydr Res 341:1820–1827PubMedGoogle Scholar
  23. Bergmann S, Schumann J, Scherlach K, Lange C, Brakhage AA, Hertweck C (2007) Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:213–217PubMedGoogle Scholar
  24. Bezuidenhout SC, Gelderblom WCA, Gorst-Allman CP, Horak M, Marasas WFO, Spiteller G, Vleggaar RM (1988) Structure elucidation of the Fumonisins, mycotoxins from Fusarium moniliforme. J Chem Soc Chem Commun 11:743–745Google Scholar
  25. Bhattacharyya RP, Remenyi A, Yeh BJ, Lim WA (2006) Domains, motifs, and scaffolds: the role of modular interactions in the evolution and wiring of cell signaling circuits. Annu Rev Biochem 75:655–680PubMedGoogle Scholar
  26. Bigelis T, Arora DK (2009) Organic acids of fungi. In: Arora DK, Elander RP, Murekji KG (eds) Fungal biotechnology. Marcel Dekker, New York, pp 357–376Google Scholar
  27. Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, Fischer R (2005) The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol 15:1833–1838PubMedGoogle Scholar
  28. Bok JW, Keller NP (2004) LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell 3:527–535PubMedGoogle Scholar
  29. Bok JW, Hoffmeister D, Maggio-Hall LA, Murillo R, Glasner JD, Keller NP (2006) Genomic mining for Aspergillus natural products. Chem Biol 13:31–37PubMedGoogle Scholar
  30. Bolker M (1998) Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genet Biol 25:143–156PubMedGoogle Scholar
  31. Bount WP (1961) Turkey “X” disease. Turkeys 9:52–55Google Scholar
  32. Bouws H, Wattenberg A, Zorn H (2008) Fungal secretomes-nature’s toolbox for white biotechnology. Appl Microbiol Biotechnol 80:381–388PubMedGoogle Scholar
  33. Braaksma M, Martens-Uzunova E, Punt P, Schaap P (2010) An inventory of the Aspergillus niger secretome by combining in silico predictions with shotgun proteomics data. BMC Genomics 11:584PubMedGoogle Scholar
  34. Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11:21–32PubMedGoogle Scholar
  35. Brown DW, Adams TH, Keller NP (1996a) Aspergillus has distinct fatty acid synthases for primary and secondary metabolism. Proc Natl Acad Sci USA 93:14873–14877PubMedGoogle Scholar
  36. Brown DW, Yu JH, Kelkar HS, Fernandes M, Nesbitt TC, Keller NP, Adams TH, Leonard TJ (1996b) Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc Natl Acad Sci USA 93:1418–1422PubMedGoogle Scholar
  37. Bussink HJ, Osmani SA (1999) A mitogen-activated protein kinase (MPKA) is involved in polarized growth in the filamentous fungus, Aspergillus nidulans. FEMS Microbiol Lett 173:117–125PubMedGoogle Scholar
  38. Cagas SE, Jain MR, Li H, Perlin DS (2011) Profiling the Aspergillus fumigatus proteome in response to caspofungin. Antimicrob Agents Chemother 55:146–154PubMedGoogle Scholar
  39. Cantarel B, Coutinho P, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–D238PubMedGoogle Scholar
  40. Capra EJ, Laub MT (2012) Evolution of two-component signal transduction systems. Annu Rev Microbiol 66:325–347PubMedGoogle Scholar
  41. Carberry S, Doyle S (2007) Proteomic studies in biomedically and industrially relevant fungi. Cytotechnology 53:95–100PubMedGoogle Scholar
  42. Cary JW, Ehrlich KC, Beltz SB, Harris-Coward P, Klich MA (2009) Characterization of the Aspergillus ochraceoroseus aflatoxin/sterigmatocystin biosynthetic gene cluster. Mycologia 101:352–362PubMedGoogle Scholar
  43. Catlett NL, Yoder OC, Turgeon BG (2003) Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell 2:1151–1161PubMedGoogle Scholar
  44. Chen Q, Marshall MN, Geib SM, Tien M, Richard TL (2012) Effects of laccase on lignin depolymerization and enzymatic hydrolysis of ensiled corn stover. Bioresour Technol 117:186–192PubMedGoogle Scholar
  45. Chiang YM, Meyer KM, Praseuth M, Baker SE, Bruno KS, Wang CC (2011) Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-gamma-pyrone. Fungal Genet Biol 48:430–437PubMedGoogle Scholar
  46. Christensen U, Gruben BS, Madrid S, Mulder H, Nikolaev I, de Vries RP (2011) Unique regulatory mechanism for D-galactose utilization in Aspergillus nidulans. Appl Environ Microbiol 77:7084–7087PubMedGoogle Scholar
  47. Clemons KV, Miller TK, Selitrennikoff CP, Stevens DA (2002) fos-1, a putative histidine kinase as a virulence factor for systemic aspergillosis. Med Mycol 40:259–262PubMedGoogle Scholar
  48. Cleveland TE, Yu J, Fedorova N, Bhatnagar D, Payne GA, Nierman WC, Bennett JW (2009) Potential of Aspergillus flavus genomics for applications in biotechnology. Trends Biotechnol 27:151–157PubMedGoogle Scholar
  49. Coutinho PM, Andersen MR, Kolenova K, vanKuyk PA, Benoit I, Gruben BS, Trejo-Aguilar B, Visser H, van Solingen P, Pakula T, Seiboth B, Battaglia E, Aguilar-Osorio G, de Jong JF, Ohm RA, Aguilar M, Henrissat B, Nielsen J, Stalbrand H, de Vries RP (2009) Post-genomic insights into the plant polysaccharide degradation potential of Aspergillus nidulans and comparison to Aspergillus niger and Aspergillus oryzae. Fungal Genet Biol 46(Suppl 1):S161–S169PubMedGoogle Scholar
  50. Cramer RA Jr, Stajich JE, Yamanaka Y, Dietrich FS, Steinbach WJ, Perfect JR (2006) Phylogenomic analysis of non-ribosomal peptide synthetases in the genus Aspergillus. Gene 383:24–32PubMedGoogle Scholar
  51. David H, Ozcelik IS, Hofmann G, Nielsen J (2008) Analysis of Aspergillus nidulans metabolism at the genome-scale. BMC Genomics 9:163PubMedGoogle Scholar
  52. de Oliveira JM, de Graaff LH (2010) Proteomics of industrial fungi: trends and insights for biotechnology. Appl Microbiol Biotechnol 89:225–237PubMedGoogle Scholar
  53. de Oliveira JM, van Passel MW, Schaap PJ, de Graaff LH (2010) Shotgun proteomics of Aspergillus niger microsomes upon D-xylose induction. Appl Environ Microbiol 76:4421–4429Google Scholar
  54. de Souza WR, de Gouvea PF, Savoldi M, Malavazi I, de Souza Bernardes LA, Goldman MH, de Vries RP, de Castro Oliveira JV, Goldman GH (2011) Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse. Biotechnol Biofuels 4:40PubMedGoogle Scholar
  55. de Vries RP (2003) Regulation of Aspergillus genes encoding plant cell wall polysaccharide degrading enzymes; relevance for industrial production. Appl Microbiol Biotechnol 61:10–20PubMedGoogle Scholar
  56. de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65:497–522PubMedGoogle Scholar
  57. de Vries RP, Benoit I, Doehlemann G, Kobayashi T, Magnuson JK, Panisko EA, Baker SE, Lebrun M-H (2011) Post-genomic approaches to understanding interactions between fungi and their environment. IMA Fungus 2:81–86PubMedGoogle Scholar
  58. Denning DW (1998) Invasive aspergillosis. Clin Infect Dis 26:781–803, quiz 804–785PubMedGoogle Scholar
  59. Denning DW, Follansbee SE, Scolaro M, Norris S, Edelstein H, Stevens DA (1991) Pulmonary aspergillosis in the acquired immunodeficiency syndrome. N Engl J Med 324:654–662PubMedGoogle Scholar
  60. Du C, Li R, Ma S, Wang D (2002) Cloning of Aspergillus fumigatus histidine kinase gene fragment and its expression during invasive infection. Mycopathologia 153:5–10PubMedGoogle Scholar
  61. Du C, Sarfati J, Latge JP, Calderone R (2006) The role of the sakA (Hog1) and tcsB (sln1) genes in the oxidant adaptation of Aspergillus fumigatus. Med Mycol 44:211–218PubMedGoogle Scholar
  62. Endo A, Kuroda M, Tanzawa K (1976a) Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett 72:323–326PubMedGoogle Scholar
  63. Endo A, Kuroda M, Tsujita Y (1976b) ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J Antibiot 29:1346–1348PubMedGoogle Scholar
  64. Endo A, Tsujita Y, Kuroda M, Tanzawa K (1977) Inhibition of cholesterol synthesis in vitro and in vivo by ML-236A and ML-236B, competitive inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Eur J Biochem 77:31–36PubMedGoogle Scholar
  65. Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ, Crabtree J, Silva JC, Badger JH, Albarraq A, Angiuoli S, Bussey H, Bowyer P, Cotty PJ, Dyer PS, Egan A, Galens K, Fraser-Liggett CM, Haas BJ, Inman JM, Kent R, Lemieux S, Malavazi I, Orvis J, Roemer T, Ronning CM, Sundaram JP, Sutton G, Turner G, Venter JC, White OR, Whitty BR, Youngman P, Wolfe KH, Goldman GH, Wortman JR, Jiang B, Denning DW, Nierman WC (2008) Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 4:e1000046PubMedGoogle Scholar
  66. Ferracin LM, Fier CB, Vieira ML, Monteiro-Vitorello CB, Varani Ade M, Rossi MM, Muller-Santos M, Taniwaki MH, Thie Iamanaka B, Fungaro MH (2012) Strain-specific polyketide synthase genes of Aspergillus niger. Int J Food Microbiol 155:137–145PubMedGoogle Scholar
  67. Fillinger S, Chaveroche MK, Shimizu K, Keller N, d’Enfert C (2002) cAMP and ras signalling independently control spore germination in the filamentous fungus Aspergillus nidulans. Mol Microbiol 44:1001–1016PubMedGoogle Scholar
  68. Finkelstein DB (1987) Improvement of enzyme production in Aspergillus. Antonie Van Leeuwenhoek 53:349–352PubMedGoogle Scholar
  69. Frisvad JC, Frank M, Houbraken JAMP, Kuijpers AFA, Samson RA (2004) New ochratoxin A producing species of Aspergillus section Circumdati. Stud Mycol 50:23–43Google Scholar
  70. Frisvad JC, Smedsgaard J, Samson RA, Larsen TO, Thrane U (2007) Fumonisin B2 production by Aspergillus niger. J Agric Food Chem 55:9727–9732PubMedGoogle Scholar
  71. Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res 112:231–240PubMedGoogle Scholar
  72. Frisvad JC, Larsen TO, Thrane U, Meijer M, Varga J, Samson RA, Nielsen KF (2011) Fumonisin and ochratoxin production in industrial Aspergillus niger strains. PLoS One 6:e23496PubMedGoogle Scholar
  73. Fuller KK, Zhao W, Askew DS, Rhodes JC (2009) Deletion of the protein kinase A regulatory subunit leads to deregulation of mitochondrial activation and nuclear duplication in Aspergillus fumigatus. Eukaryot Cell 8:271–277PubMedGoogle Scholar
  74. Fuller KK, Richie DL, Feng X, Krishnan K, Stephens TJ, Wikenheiser-Brokamp KA, Askew DS, Rhodes JC (2011) Divergent Protein Kinase A isoforms co-ordinately regulate conidial germination, carbohydrate metabolism and virulence in Aspergillus fumigatus. Mol Microbiol 79:1045–1062PubMedGoogle Scholar
  75. Furukawa K, Katsuno Y, Urao T, Yabe T, Yamada-Okabe T, Yamada-Okabe H, Yamagata Y, Abe K, Nakajima T (2002) Isolation and functional analysis of a gene, tcsB, encoding a transmembrane hybrid-type histidine kinase from Aspergillus nidulans. Appl Environ Microbiol 68:5304–5310PubMedGoogle Scholar
  76. Furukawa K, Hoshi Y, Maeda T, Nakajima T, Abe K (2005) Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress. Mol Microbiol 56:1246–1261PubMedGoogle Scholar
  77. Futagami T, Mori K, Yamashita A, Wada S, Kajiwara Y, Takashita H, Omori T, Takegawa K, Tashiro K, Kuhara S, Goto M (2011) Genome sequence of the white koji mold Aspergillus kawachii IFO 4308, used for brewing the Japanese distilled spirit shochu. Eukaryot Cell 10:1586–1587PubMedGoogle Scholar
  78. Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Basturkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus GH, Draht O, Busch S, D’Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Penalva MA, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sachs MS, Osmani SA, Birren BW (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115PubMedGoogle Scholar
  79. Gallo A, Bruno KS, Solfrizzo M, Perrone G, Mule G, Visconti A, Baker SE (2012) New insight in the ochratoxin A biosynthetic pathway by deletion of an nrps gene in Aspergillus carbonarius. Appl Environ Microbiol 78:8208–8218PubMedGoogle Scholar
  80. Gautam P, Upadhyay SK, Hassan W, Madan T, Sirdeshmukh R, Sundaram CS, Gade WN, Basir SF, Singh Y, Sarma PU (2011) Transcriptomic and proteomic profile of Aspergillus fumigatus on exposure to artemisinin. Mycopathologia 172:331–346PubMedGoogle Scholar
  81. Geiser DM, Samson RA, Varga J, Rokas A, Witiak SM (2008) A review of molecular phylogenetics in Aspergillus, and prospects for a robust genus-wide phylogeny. In: Varga J, Samson RA (eds) Aspergillus in the genomic era. Wageningen Academic, Wageningen, pp 17–32Google Scholar
  82. Gelderblom WC, Jaskiewicz K, Marasas WF, Thiel PG, Horak RM, Vleggaar R, Kriek NP (1988) Fumonisins–novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl Environ Microbiol 54:1806–1811PubMedGoogle Scholar
  83. Gibbons JG, Rokas A (2013) The function and evolution of the Aspergillus genome. Trends Microbiol 21:14–22PubMedGoogle Scholar
  84. Gibbons JG, Salichos L, Slot JC, Rinker DC, McGary KL, King JG, Klich MA, Tabb DL, McDonald WH, Rokas A (2012) The evolutionary imprint of domestication on genome variation and function of the filamentous fungus Aspergillus oryzae. Curr Biol 22:1403–1409PubMedGoogle Scholar
  85. Grigoriev IV, Cullen D, Goodwin SB, Hibbett D, Jeffries TW, Kubicek CP, Kuske C, Magnuson JK, Martin F, Spatafora JW, Tsang A, Baker SE (2011) Fueling the future with fungal genomics. Mycology 2:192–209Google Scholar
  86. Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D, Kuo A, Minovitsky S, Nikitin R, Ohm RA, Otillar R, Poliakov A, Ratnere I, Riley R, Smirnova T, Rokhsar D, Dubchak I (2012) The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res 40:D26–D32PubMedGoogle Scholar
  87. Gruben BS, Zhou M, de Vries RP (2012) GalX regulates the D-galactose oxido-reductive pathway in Aspergillus niger. FEBS Lett 586(22):3980–3985PubMedGoogle Scholar
  88. Hagiwara D, Asano Y, Marui J, Furukawa K, Kanamaru K, Kato M, Abe K, Kobayashi T, Yamashino T, Mizuno T (2007a) The SskA and SrrA response regulators are implicated in oxidative stress responses of hyphae and asexual spores in the phosphorelay signaling network of Aspergillus nidulans. Biosci Biotechnol Biochem 71:1003–1014PubMedGoogle Scholar
  89. Hagiwara D, Matsubayashi Y, Marui J, Furukawa K, Yamashino T, Kanamaru K, Kato M, Abe K, Kobayashi T, Mizuno T (2007b) Characterization of the NikA histidine kinase implicated in the phosphorelay signal transduction of Aspergillus nidulans, with special reference to fungicide responses. Biosci Biotechnol Biochem 71:844–847PubMedGoogle Scholar
  90. Hagiwara D, Mizuno T, Abe K (2009) Characterization of NikA histidine kinase and two response regulators with special reference to osmotic adaptation and asexual development in Aspergillus nidulans. Biosci Biotechnol Biochem 73:1566–1571PubMedGoogle Scholar
  91. Han KH, Seo JA, Yu JH (2004) A putative G protein-coupled receptor negatively controls sexual development in Aspergillus nidulans. Mol Microbiol 51:1333–1345PubMedGoogle Scholar
  92. Hatakeyama R, Nakahama T, Higuchi Y, Kitamoto K (2007) Light represses conidiation in koji mold Aspergillus oryzae. Biosci Biotechnol Biochem 71:1844–1849PubMedGoogle Scholar
  93. Hendrickson L, Davis CR, Roach C, Nguyen DK, Aldrich T, McAda PC, Reeves CD (1999) Lovastatin biosynthesis in Aspergillus terreus: characterization of blocked mutants, enzyme activities and a multifunctional polyketide synthase gene. Chem Biol 6:429–439PubMedGoogle Scholar
  94. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316PubMedGoogle Scholar
  95. Hicks JK, Yu JH, Keller NP, Adams TH (1997) Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signaling pathway. EMBO J 16:4916–4923PubMedGoogle Scholar
  96. Hill CS, Treisman R (1995) Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell 80:199–211PubMedGoogle Scholar
  97. Hilz H (2007) Characterisation of cell wall polysaccharides in bilberries and black currants. Ph.D. thesis, Wageningen University, The NetherlandsGoogle Scholar
  98. Hoch JA (2000) Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3:165–170PubMedGoogle Scholar
  99. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372PubMedGoogle Scholar
  100. Houbraken J, Samson RA (2011) Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol 70:1–51PubMedGoogle Scholar
  101. Jorgensen TR, Park J, Arentshorst M, van Welzen AM, Lamers G, Vankuyk PA, Damveld RA, van den Hondel CA, Nielsen KF, Frisvad JC, Ram AF (2011) The molecular and genetic basis of conidial pigmentation in Aspergillus niger. Fungal Genet Biol 48:544–553PubMedGoogle Scholar
  102. Jun SC, Lee SJ, Park HJ, Kang JY, Leem YE, Yang TH, Chang MH, Kim JM, Jang SH, Kim HG, Han DM, Chae KS, Jahng KY (2011) The MpkB MAP kinase plays a role in post-karyogamy processes as well as in hyphal anastomosis during sexual development in Aspergillus nidulans. J Microbiol 49:418–430PubMedGoogle Scholar
  103. Jung K, Fried L, Behr S, Heermann R (2012) Histidine kinases and response regulators in networks. Curr Opin Microbiol 15:118–124PubMedGoogle Scholar
  104. Kaji A, Saito R, Nomura M, Miyamoto K, Kiriyama N (1998) Relationship between the structure and cytotoxic activity of asterriquinone, an antitumor metabolite of Aspergillus terreus, and its alkyl ether derivatives. Biol Pharm Bull 21:945–949PubMedGoogle Scholar
  105. Kennedy J, Auclair K, Kendrew SG, Park C, Vederas JC, Hutchinson CR (1999) Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284:1368–1372PubMedGoogle Scholar
  106. Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, Fedorova ND (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 47:736–741PubMedGoogle Scholar
  107. Kim Y, Nandakumar MP, Marten MR (2008) The state of proteome profiling in the fungal genus Aspergillus. Brief Funct Genomic Proteomic 7:87–94PubMedGoogle Scholar
  108. Kiyota T, Hamada R, Sakamoto K, Iwashita K, Yamada O, Mikami S (2011) Aflatoxin non-productivity of Aspergillus oryzae caused by loss of function in the aflJ gene product. J Biosci Bioeng 111:512–517PubMedGoogle Scholar
  109. Klaassen CH, Osherov N (2007) Aspergillus strain typing in the genomics era. Stud Mycol 59:47–51PubMedGoogle Scholar
  110. Kniemeyer O (2011) Proteomics of eukaryotic microorganisms: the medically and biotechnologically important fungal genus Aspergillus. Proteomics 11:3232–3243PubMedGoogle Scholar
  111. Kobayashi T, Abe K, Asai K, Gomi K, Juvvadi PR, Kato M, Kitamoto K, Takeuchi M, Machida M (2007) Genomics of Aspergillus oryzae. Biosci Biotechnol Biochem 71:646–670PubMedGoogle Scholar
  112. Krijgsheld P, Altelaar AFM, Post H, Ringrose JH, Müller WH, Heck AJR, Wösten HAB (2012) Spatially resolving the secretome within the mycelium of the cell factory Aspergillus niger. J Proteome Res 11:2807–2818PubMedGoogle Scholar
  113. Kroken S, Glass NL, Taylor JW, Yoder OC, Turgeon BG (2003) Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci USA 100:15670–15675PubMedGoogle Scholar
  114. Lafon A, Han KH, Seo JA, Yu JH, d’Enfert C (2006) G-protein and cAMP-mediated signaling in aspergilli: a genomic perspective. Fungal Genet Biol 43:490–502PubMedGoogle Scholar
  115. Lamarre C, Ibrahim-Granet O, Du C, Calderone R, Latge JP (2007) Characterization of the SKN7 ortholog of Aspergillus fumigatus. Fungal Genet Biol 44:682–690PubMedGoogle Scholar
  116. Latge JP (1999) Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12:310–350PubMedGoogle Scholar
  117. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764PubMedGoogle Scholar
  118. Lee YH, Tominaga M, Hayashi R, Sakamoto K, Yamada O, Akita O (2006) Aspergillus oryzae strains with a large deletion of the aflatoxin biosynthetic homologous gene cluster differentiated by chromosomal breakage. Appl Microbiol Biotechnol 72:339–345PubMedGoogle Scholar
  119. Lengeler KB, Davidson RC, D’Souza C, Harashima T, Shen WC, Wang P, Pan XW, Waugh M, Heitman J (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746–785PubMedGoogle Scholar
  120. Levin AM, de Vries RP, Wösten HAB (2007) Localization of protein secretion in fungal colonies using a novel culturing technique; the ring-plate system. J Microbiol Methods 69:399–401PubMedGoogle Scholar
  121. Li D, Agrellos OA, Calderone R (2010) Histidine kinases keep fungi safe and vigorous. Curr Opin Microbiol 13:424–430PubMedGoogle Scholar
  122. Liebmann B, Gattung S, Jahn B, Brakhage AA (2003) cAMP signaling in Aspergillus fumigatus is involved in the regulation of the virulence gene pksP and in defense against killing by macrophages. Mol Genet Genomics 269:420–435PubMedGoogle Scholar
  123. Liebmann B, Muller M, Braun A, Brakhage AA (2004) The cyclic AMP-dependent protein kinase a network regulates development and virulence in Aspergillus fumigatus. Infect Immun 72:5193–5203PubMedGoogle Scholar
  124. Lu X, Sun J, Nimtz M, Wissing J, Zeng AP, Rinas U (2010) The intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate. Microb Cell Fact 9:23PubMedGoogle Scholar
  125. Mabey Gilsenan JE, Atherton G, Bartholomew J, Giles PF, Attwood TK, Denning DW, Bowyer P (2009) Aspergillus genomes and the Aspergillus cloud. Nucleic Acids Res 37:D509–D514PubMedGoogle Scholar
  126. Mabey Gilsenan J, Cooley J, Bowyer P (2012) CADRE: the Central Aspergillus Data REpository 2012. Nucleic Acids Res 40:D660–D666PubMedGoogle Scholar
  127. Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama J, Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N, Kikuchi H (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161PubMedGoogle Scholar
  128. Machida M, Terabayashi Y, Sano M, Yamane N, Tamano K, Payne GA, Yu J, Cleveland TE, Nierman WC (2008) Genomics of industrial Aspergilli and comparison with toxigenic relatives. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 25:1147–1151PubMedGoogle Scholar
  129. Maeda H, Sano M, Maruyama Y, Tanno T, Akao T, Totsuka Y, Endo M, Sakurada R, Yamagata Y, Machida M, Akita O, Hasegawa F, Abe K, Gomi K, Nakajima T, Iguchi Y (2004) Transcriptional analysis of genes for energy catabolism and hydrolytic enzymes in the filamentous fungus Aspergillus oryzae using cDNA microarrays and expressed sequence tags. Appl Microbiol Biotechnol 65:74–83PubMedGoogle Scholar
  130. Matsushima K, Chang PK, Yu J, Abe K, Bhatnagar D, Cleveland TE (2001a) Pre-termination in aflR of Aspergillus sojae inhibits aflatoxin biosynthesis. Appl Microbiol Biotechnol 55:585–589PubMedGoogle Scholar
  131. Matsushima K, Yashiro K, Hanya Y, Abe K, Yabe K, Hamasaki T (2001b) Absence of aflatoxin biosynthesis in koji mold (Aspergillus sojae). Appl Microbiol Biotechnol 55:771–776PubMedGoogle Scholar
  132. May GS (2008) Mitogen-activated protein kinase pathways in Aspergilli. In: Goldam GH, Osmani SA (eds) The Aspergilli genomics, medical aspects, biotechnology, and research methods. CRC, Boca RatonGoogle Scholar
  133. May GS, Xue T, Kontoyiannis DP, Gustin MC (2005) Mitogen activated protein kinases of Aspergillus fumigatus. Med Mycol 43(Suppl 1):S83–S86PubMedGoogle Scholar
  134. McCormick A, Jacobsen ID, Broniszewska M, Beck J, Heesemann J, Ebel F (2012) The two-component sensor kinase TcsC and its role in stress resistance of the human-pathogenic mold Aspergillus fumigatus. PLoS One 7:e38262PubMedGoogle Scholar
  135. Micheli PA (1729) Nova Plantarum Genera. Typis B Paperinii, Florentiae, 234 ppGoogle Scholar
  136. Mircus G, Hagag S, Levdansky E, Sharon H, Shadkchan Y, Shalit I, Osherov N (2009) Identification of novel cell wall destabilizing antifungal compounds using a conditional Aspergillus nidulans protein kinase C mutant. J Antimicrob Chemother 64:755–763PubMedGoogle Scholar
  137. Mizutani O, Nojima A, Yamamoto M, Furukawa K, Fujioka T, Yamagata Y, Abe K, Nakajima T (2004) Disordered cell integrity signaling caused by disruption of the kexB gene in Aspergillus oryzae. Eukaryot Cell 3:1036–1048PubMedGoogle Scholar
  138. Mok J, Zhu X, Snyder M (2011) Dissecting phosphorylation networks: lessons learned from yeast. Expert Rev Proteomics 8:775–786PubMedGoogle Scholar
  139. Nesbitt BF, O’Kelly J, Sargeant K, Sheridan A (1962) Aspergillus flavus and turkey X disease. Toxic metabolites of Aspergillus flavus. Nature 195:1062–1063PubMedGoogle Scholar
  140. Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science 296:1636–1639PubMedGoogle Scholar
  141. Ni M, Rierson S, Seo JA, Yu JH (2005) The pkaB gene encoding the secondary protein kinase A catalytic subunit has a synthetic lethal interaction with pkaA and plays overlapping and opposite roles in Aspergillus nidulans. Eukaryot Cell 4:1465–1476PubMedGoogle Scholar
  142. Nielsen KF, Mogensen JM, Johansen M, Larsen TO, Frisvad JC (2009) Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Anal Bioanal Chem 395:1225–1242PubMedGoogle Scholar
  143. Nierman WC, May G, Kim HS, Anderson MJ, Chen D, Denning DW (2005a) What the Aspergillus genomes have told us. Med Mycol 43(Suppl 1):S3–S5PubMedGoogle Scholar
  144. Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, Bennett J, Bowyer P, Chen D, Collins M, Coulsen R, Davies R, Dyer PS, Farman M, Fedorova N, Fedorova N, Feldblyum TV, Fischer R, Fosker N, Fraser A, Garcia JL, Garcia MJ, Goble A, Goldman GH, Gomi K, Griffith-Jones S, Gwilliam R, Haas B, Haas H, Harris D, Horiuchi H, Huang J, Humphray S, Jimenez J, Keller N, Khouri H, Kitamoto K, Kobayashi T, Konzack S, Kulkarni R, Kumagai T, Lafton A, Latge J-P, Li W, Lord A, Lu C, Majoros WH, May GS, Miller BL, Mohamoud Y, Molina M, Monod M, Mouyna I, Mulligan S, Murphy L, O’Neil S, Paulsen I, Penalva MA, Pertea M, Price C, Pritchard BL, Quail MA, Rabbinowitsch E, Rawlins N, Rajandream M-A, Reichard U, Renauld H, Robson GD, de Cordoba SR, Rodriguez-Pena JM, Ronning CM, Rutter S, Salzberg SL, Sanchez M, Sanchez-Ferrero JC, Saunders D, Seeger K, Squares R, Squares S, Takeuchi M, Tekaia F, Turner G, de Aldana CRV, Weidman J, White O, Woodward J, Yu J-H, Fraser C, Galagan JE, Asai K, Machida M, Hall N, Barrell B, Denning DW (2005b) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151–1156PubMedGoogle Scholar
  145. O’Callaghan J, Dobson AD (2006) Molecular characterization of ochratoxin A biosynthesis and producing fungi. Adv Appl Microbiol 58:227–243PubMedGoogle Scholar
  146. O’Gorman CM, Fuller HT, Dyer PS (2009) Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 457:471–474PubMedGoogle Scholar
  147. Oda K, Kakizono D, Yamada O, Iefuji H, Akita O, Iwashita K (2006) Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions. Appl Environ Microbiol 72:3448–3457PubMedGoogle Scholar
  148. Pace V, Hoyos P, Castoldi L, Domínguez de María P, Alcántara AR (2012) 2-Methyltetrahydrofuran (2-MeTHF): a biomass-derived solvent with broad application in organic chemistry. ChemSusChem 5:1369–1379PubMedGoogle Scholar
  149. Payne GA, Nierman WC, Wortman JR, Pritchard BL, Brown D, Dean RA, Bhatnagar D, Cleveland TE, Machida M, Yu J (2006) Whole genome comparison of Aspergillus flavus and Aspergillus oryzae. Med Mycol 44(S1):9–11Google Scholar
  150. Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A, Dijkhuizen L, Driessen AJ, D’Enfert C, Geysens S, Goosen C, Groot GS, de Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel CA, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJ, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NN, Ram AF, Rinas U, Roubos JA, Sagt CM, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJ, Wedler H, Wosten HA, Zeng AP, van Ooyen AJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231PubMedGoogle Scholar
  151. Peng F, Peng P, Xu F, Sun R-C (2012) Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv 30:879–903PubMedGoogle Scholar
  152. Perrone G, Susca A, Cozzi G, Ehrlich K, Varga J, Frisvad JC, Meijer M, Noonim P, Mahakarnchanakul W, Samson RA (2007) Biodiversity of Aspergillus species in some important agricultural products. Stud Mycol 59:53–66PubMedGoogle Scholar
  153. Pitt JI (1987) Penicillium viridicatum, Penicillium verrucosum, and production of ochratoxin A. Appl Environ Microbiol 53:266–269PubMedGoogle Scholar
  154. Pott GB, Miller TK, Bartlett JA, Palas JS, Selitrennikoff CP (2000) The isolation of FOS-1, a gene encoding a putative two-component histidine kinase from Aspergillus fumigatus. Fungal Genet Biol 31:55–67PubMedGoogle Scholar
  155. Priefert H, Rabenhorst J, Steinbüchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56:296–314PubMedGoogle Scholar
  156. Pringle A, Baker DM, Platt JL, Wares JP, Latge JP, Taylor JW (2005) Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution 59:1886–1899PubMedGoogle Scholar
  157. Reyes G, Romans A, Nguyen CK, May GS (2006) Novel mitogen-activated protein kinase MpkC of Aspergillus fumigatus is required for utilization of polyalcohol sugars. Eukaryot Cell 5:1934–1940PubMedGoogle Scholar
  158. Rittenour WR, Si H, Harris SD (2009) Hyphal morphogenesis in Aspergillus nidulans. Fungal Biol Rev 23:20–29Google Scholar
  159. Robertson LS, Fink GR (1998) The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci USA 95:13783–13787PubMedGoogle Scholar
  160. Rokas A, Payne G, Fedorova ND, Baker SE, Machida M, Yu J, Georgianna DR, Dean RA, Bhatnagar D, Cleveland TE, Wortman JR, Maiti R, Joardar V, Amedeo P, Denning DW, Nierman WC (2007) What can comparative genomics tell us about species concepts in the genus Aspergillus? Stud Mycol 59:11–17PubMedGoogle Scholar
  161. Samson RA, Houbraken JAMP, Kuijpers AFA, Frank JM, Frisvad JC (2004) New ochratoxin A or sclerotium producing species in Aspergillus section Nigri. Stud Mycol 50:45–61Google Scholar
  162. Sanchez JF, Somoza AD, Keller NP, Wang CC (2012) Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat Prod Rep 29:351–371PubMedGoogle Scholar
  163. Santos JL, Shiozaki K (2001) Fungal histidine kinases. Sci STKE 2001:re1PubMedGoogle Scholar
  164. Santos JL, Shiozaki K (2004) Phosphorelay signaling in yeast in response to changes in osmolarity. Sci STKE 2004:tr12PubMedGoogle Scholar
  165. Sato A, Oshima K, Noguchi H, Ogawa M, Takahashi T, Oguma T, Koyama Y, Itoh T, Hattori M, Hanya Y (2011) Draft genome sequencing and comparative analysis of Aspergillus sojae NBRC4239. DNA Res 18:165–176PubMedGoogle Scholar
  166. Saudohar M, Bencina M, van de Vondervoort PJ, Panneman H, Legisa M, Visser J, Ruijter GJ (2002) Cyclic AMP-dependent protein kinase is involved in morphogenesis of Aspergillus niger. Microbiology 148:2635–2645PubMedGoogle Scholar
  167. Saykhedkar S, Ray A, Ayoubi-Canaan P, Hartson S, Prade R, Mort A (2012) A time course analysis of the extracellular proteome of Aspergillus nidulans growing on sorghum stover. Biotechnol Biofuels 5:52PubMedGoogle Scholar
  168. Scherlach K, Hertweck C (2006) Discovery of aspoquinolones A-D, prenylated quinoline-2-one alkaloids from Aspergillus nidulans, motivated by genome mining. Org Biomol Chem 4:3517–3520PubMedGoogle Scholar
  169. Seo JA, Han KH, Yu JH (2004) The gprA and gprB genes encode putative G protein-coupled receptors required for self-fertilization in Aspergillus nidulans. Mol Microbiol 53:1611–1623PubMedGoogle Scholar
  170. Sharma M, Soni R, Nazir A, Oberoi H, Chadha B (2011) Evaluation of glycosyl hydrolases in the secretome of Aspergillus fumigatus and saccharification of alkali-treated rice straw. Appl Biochem Biotechnol 163:577–591PubMedGoogle Scholar
  171. Shimizu K, Keller NP (2001) Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics 157:591–600PubMedGoogle Scholar
  172. Singh S, Gupta S, Singh B, Sharma SK, Gupta VK, Sharma GL (2012) Proteomic characterization of Aspergillus fumigatus treated with an antifungal coumarin for identification of novel target molecules of key pathways. J Proteome Res 11:3259–3268Google Scholar
  173. St Leger RJ, Screen SE, Shams-Pirzadeh B (2000) Lack of host specialization in Aspergillus flavus. Appl Environ Microbiol 66:320–324PubMedGoogle Scholar
  174. Takahashi T, Chang PK, Matsushima K, Yu J, Abe K, Bhatnagar D, Cleveland TE, Koyama Y (2002) Nonfunctionality of Aspergillus sojae aflR in a strain of Aspergillus parasiticus with a disrupted aflR gene. Appl Environ Microbiol 68:3737–3743PubMedGoogle Scholar
  175. Taylor SS, Buechler JA, Yonemoto W (1990) cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu Rev Biochem 59:971–1005PubMedGoogle Scholar
  176. Taylor SS, Yang J, Wu J, Haste NM, Radzio-Andzelm E, Anand G (2004) PKA: a portrait of protein kinase dynamics. Biochim Biophys Acta 1697:259–269PubMedGoogle Scholar
  177. Tobert JA (2003) Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat Rev Drug Discov 2:517–526PubMedGoogle Scholar
  178. Tominaga M, Lee YH, Hayashi R, Suzuki Y, Yamada O, Sakamoto K, Gotoh K, Akita O (2006) Molecular analysis of an inactive aflatoxin biosynthesis gene cluster in Aspergillus oryzae RIB strains. Appl Environ Microbiol 72:484–490PubMedGoogle Scholar
  179. Treisman R (1996) Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol 8:205–215PubMedGoogle Scholar
  180. Tsang A, Butler G, Powlowski J, Panisko EA, Baker SE (2009) Analytical and computational approaches to define the Aspergillus niger secretome. Fungal Genet Biol 46:S153–S160PubMedGoogle Scholar
  181. Valiante V, Heinekamp T, Jain R, Hartl A, Brakhage AA (2008) The mitogen-activated protein kinase MpkA of Aspergillus fumigatus regulates cell wall signaling and oxidative stress response. Fungal Genet Biol 45:618–627PubMedGoogle Scholar
  182. Valiante V, Jain R, Heinekamp T, Brakhage AA (2009) The MpkA MAP kinase module regulates cell wall integrity signaling and pyomelanin formation in Aspergillus fumigatus. Fungal Genet Biol 46:909–918PubMedGoogle Scholar
  183. van den Berg MA, Albang R, Albermann K, Badger JH, Daran JM, Driessen AJ, Garcia-Estrada C, Fedorova ND, Harris DM, Heijne WHM, Joardar V, Kiel JAK, Kovalchuk A, Martin JF, Nierman WC, Nijland JG, Pronk JT, Roubos JA, van der Klei IJ, van Peij NN, Veenhuis M, von Dohren H, Wagner C, Wortman J, Bovenberg RAL (2008) Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol 26:1161–1168PubMedGoogle Scholar
  184. van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91:1477–1492PubMedGoogle Scholar
  185. van der Merwe KJ, Steyn PS, Fourie L, Scott DB, Theron JJ (1965) Ochratoxin A, a toxic metabolite produced by Aspergillus ochraceus Wilh. Nature 205:1112–1113PubMedGoogle Scholar
  186. Van der Zijden ASM, Koelensmid WAA, Boldingh J (1962) Aspergillus flavus and Turkey X disease: isolation in crystalline form of a toxin responsible for Turkey X disease. Nature 195:1060–1062Google Scholar
  187. van Walbeek W, Scott PM, Harwig J, Lawrence JW (1969) Penicillium viridicatum Westling: a new source of ochratoxin A. Can J Microbiol 15:1281–1285PubMedGoogle Scholar
  188. Varga J, Kevei F, Hamari Z, Tóth B, Téren J, Croft JH, Kozakiewicz Z (2000) Genotypic and phenotypic variability among black Aspergilli. In: Samson RA, Pitt JI (eds) Integration of modern taxonomic methods for Penicillium and Aspergillus classification. Harwood Academic, Amsterdam, pp 397–411Google Scholar
  189. Varga J, Rigo K, Kocsube S, Farkas B, Pal K (2003) Diversity of polyketide synthase gene sequences in Aspergillus species. Res Microbiol 154:593–600PubMedGoogle Scholar
  190. Varga J, Juhász A, Kevei F, Kozakiewicz Z (2004) Molecular diversity of agriculturally important Aspergillus species. Eur J Plant Pathol 110:627–640Google Scholar
  191. Vargas-Perez I, Sanchez O, Kawasaki L, Georgellis D, Aguirre J (2007) Response regulators SrrA and SskA are central components of a phosphorelay system involved in stress signal transduction and asexual sporulation in Aspergillus nidulans. Eukaryot Cell 6:1570–1583PubMedGoogle Scholar
  192. Virginia M, Appleyard CL, McPheat WL, Stark MJ (2000) A novel ‘two-component’ protein containing histidine kinase and response regulator domains required for sporulation in Aspergillus nidulans. Curr Genet 37:364–372PubMedGoogle Scholar
  193. Wang H, Xu Z, Gao L, Hao B (2009) A fungal phylogeny based on 82 complete genomes using the composition vector method. BMC Evol Biol 9:195PubMedGoogle Scholar
  194. Watanabe CM, Wilson D, Linz JE, Townsend CA (1996) Demonstration of the catalytic roles and evidence for the physical association of type I fatty acid synthases and a polyketide synthase in the biosynthesis of aflatoxin B1. Chem Biol 3:463–469PubMedGoogle Scholar
  195. Watson AJ, Fuller LJ, Jeenes DJ, Archer DB (1999) Homologs of aflatoxin biosynthesis genes and sequence of aflR in Aspergillus oryzae and Aspergillus sojae. Appl Environ Microbiol 65:307–310PubMedGoogle Scholar
  196. Wei H, Requena N, Fischer R (2003) The MAPKK kinase SteC regulates conidiophore morphology and is essential for heterokaryon formation and sexual development in the homothallic fungus Aspergillus nidulans. Mol Microbiol 47:1577–1588PubMedGoogle Scholar
  197. West AH, Stock AM (2001) Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26:369–376PubMedGoogle Scholar
  198. Wieser J, Yu JH, Adams TH (1997) Dominant mutations affecting both sporulation and sterigmatocystin biosynthesis in Aspergillus nidulans. Curr Genet 32:218–224PubMedGoogle Scholar
  199. Woo PC, Lau SK, Liu B, Cai JJ, Chong KT, Tse H, Kao RY, Chan CM, Chow WN, Yuen KY (2011) Draft genome sequence of Penicillium marneffei strain PM1. Eukaryot Cell 10:1740–1741PubMedGoogle Scholar
  200. Wright JC, Sugden D, Francis-McIntyre S, Riba-Garcia I, Gaskell SJ, Grigoriev IV, Baker SE, Beynon RJ, Hubbard SJ (2009) Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger. BMC Genomics 10:61PubMedGoogle Scholar
  201. Yu JH (2006) Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. J Microbiol 44:145–154PubMedGoogle Scholar
  202. Yu JH, d’Enfert C (2008) Signal transduction in Aspergilli. In: Goldman GH, Osmani SA (eds) The Aspergilli genomics, medical aspects, biotechnology, and research methods. CRC, Boca RatonGoogle Scholar
  203. Yu J, Chang PK, Cary JW, Wright M, Bhatnagar D, Cleveland TE, Payne GA, Linz JE (1995) Comparative mapping of aflatoxin pathway gene clusters in Aspergillus parasiticus and Aspergillus flavus. Appl Environ Microbiol 61:2365–2371PubMedGoogle Scholar
  204. Yu JH, Wieser J, Adams TH (1996) The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. EMBO J 15:5184–5190PubMedGoogle Scholar
  205. Yu JH, Rosen S, Adams TH (1999) Extragenic suppressors of loss-of-function mutations in the aspergillus FlbA regulator of G-protein signaling domain protein. Genetics 151:97–105PubMedGoogle Scholar
  206. Yu J, Bhatnagar D, Cleveland TE (2004a) Completed sequence of aflatoxin pathway gene cluster in Aspergillus parasiticus. FEBS Lett 564:126–130PubMedGoogle Scholar
  207. Yu J, Chang PK, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, Payne GA, Linz JE, Woloshuk CP, Bennett JW (2004b) Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 70:1253–1262PubMedGoogle Scholar
  208. Yu JH, Mah JH, Seo JA (2006) Growth and developmental control in the model and pathogenic aspergilli. Eukaryot Cell 5:1577–1584PubMedGoogle Scholar
  209. Zhao W, Panepinto JC, Fortwendel JR, Fox L, Oliver BG, Askew DS, Rhodes JC (2006) Deletion of the regulatory subunit of protein kinase A in Aspergillus fumigatus alters morphology, sensitivity to oxidative damage, and virulence. Infect Immun 74:4865–4874PubMedGoogle Scholar
  210. Zhao X, Mehrabi R, Xu JR (2007) Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot Cell 6:1701–1714PubMedGoogle Scholar
  211. Zhao G, Hou L, Yao Y, Wang C, Cao X (2012) Comparative proteome analysis of Aspergillus oryzae 3.042 and A. oryzae 100–8 strains: towards the production of different soy sauce flavors. J Proteomics 75:3914–3924PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Isabelle Benoit
    • 1
  • Iran Malavazi
    • 2
  • Gustavo Henrique Goldman
    • 3
    • 4
  • Scott E. Baker
    • 5
  • Ronald P. de Vries
    • 1
    Email author
  1. 1.CBS-KNAW Fungal Biodiversity CentreUtrechtThe Netherlands
  2. 2.Departamento de Genética e EvoluçãoUniversidade Federal de São CarlosSão CarlosBrazil
  3. 3.Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  4. 4.Laboratório Nacional de Ciência e Tecnologia do Bioetanol – CTBECampinasBrazil
  5. 5.Pacific Northwest National LaboratoryEnvironmental Molecular Science LaboratoryRichlandUSA

Personalised recommendations