Major Plant Pathogens of the Magnaporthaceae Family

  • Adriana Illana
  • Julio Rodriguez-Romero
  • Ane SesmaEmail author
Part of the Soil Biology book series (SOILBIOL, volume 36)


The Magnaporthaceae family includes fungal species that cause devastating diseases on cereals and grasses. The causal agent of take-all disease of wheat Gaeumannomyces graminis, the rice blast fungus Magnaporthe oryzae, and Magnaporthe poae which causes the grey leaf spot on turfgrasses, belong to this family. M. poae and G. graminis are considered root pathogens, whereas M. oryzae is found on aerial plant tissues. Remarkably, M. oryzae can also infect roots and distinct mechanisms control its root infection ability compared to leaf colonisation. Since G. graminis and M. poae are genetically intractable, M. oryzae underground infection process can be used to dissect genetic pathways and molecular mechanisms underlying root infection in other members of Magnaporthaceae. Interestingly, M. oryzae root infection process also shares similarities with ancient mycorrhizal associations. Here, we highlight the latest advances on the mechanisms regulating pathogenicity in these economically significant plant pathogens.


Germ Tube Rice Blast Carbon Catabolite Repression Grey Leaf Spot Rice Blast Fungus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams TH, Boylan MT, Timberlake WE (1988) BrlA is necessary and sufficient to direct conidiophore development in Aspergillus nidulans. Cell 54:353–362PubMedCrossRefGoogle Scholar
  2. Ahn N, Kim S, Choi W, Im KH, Lee YH (2004) Extracellular matrix protein gene, EMP1, is required for appressorium formation and pathogenicity of the rice blast fungus, Magnaporthe grisea. Mol Cells 17:166–173PubMedGoogle Scholar
  3. Arnaud-Haond S, Duarte CM, Alberto F, Serrao EA (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16:5115–5139PubMedCrossRefGoogle Scholar
  4. Arx JA, Olivier DL (1952) The taxonomy of Ophiobolus graminis Sacc. Trans Br Mycol Soc 35:29–33CrossRefGoogle Scholar
  5. Asher MC, Shipton PJ (1981) Biology and control of take-all. Academic, LondonGoogle Scholar
  6. Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu JZ, Matsumoto T, Ono K, Yano M (2008) Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer pikm-specific rice blast resistance. Genetics 180:2267–2276PubMedCrossRefGoogle Scholar
  7. Bae CY, Kim S, Choi WB, Lee YH (2007) Involvement of extracellular matrix and integrin-like proteins on conidial adhesion and appressorium differentiation in Magnaporthe oryzae. J Microbiol Biotechnol 17:1198–1203PubMedGoogle Scholar
  8. Balhadere PV, Talbot NJ (2001) PDE1 encodes a P-Type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell 13:1987–2004PubMedGoogle Scholar
  9. Balhadere PV, Foster AJ, Talbot NJ (1999) Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis. Mol Plant Microbe Interact 12:129–142CrossRefGoogle Scholar
  10. Ballini E, Morel J-B, Droc G, Price A, Courtois B, Nottéghem J-L, Tharreau D (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact 21:859–868PubMedCrossRefGoogle Scholar
  11. Bateman GL, Ward E, Antoniw JF (1992) Identification of Gaeumannomyces graminis var. tritici and G. graminis var. avenae using a DNA probe and nonmolecular methods. Mycol Res 96:737–742CrossRefGoogle Scholar
  12. Beckerman JL, Ebbole DJ (1996) MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition. Mol Plant Microbe Interact 9:450–456PubMedCrossRefGoogle Scholar
  13. Bell K, Oparka K (2011) Imaging plasmodesmata. Protoplasma 248:9–25PubMedCrossRefGoogle Scholar
  14. Berbee ML (2001) The phylogeny of plant and animal pathogens in the Ascomycota. Physiol Mol Plant Pathol 59:165–188CrossRefGoogle Scholar
  15. Berruyer R, Adreit H, Milazzo J, Gaillard S, Berger A, Dioh W, Lebrun MH, Tharreau D (2003) Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theor Appl Genet 107:1139–1147PubMedCrossRefGoogle Scholar
  16. Besi M, Tucker SL, Sesma A (2009) Magnaporthe and its relatives. Encyclopedia of life sciences. Wiley, ChichesterGoogle Scholar
  17. Betts MF, Tucker SL, Galadima N et al (2007) Development of a high throughput transformation system for insertional mutagenesis in Magnaporthe oryzae. Fungal Genet Biol 44:1035–1049PubMedCrossRefGoogle Scholar
  18. Borromeo ES, Nelson RJ, Bonman JM, Leung H (1993) Genetic differentiation among isolates of Pyricularia infecting rice and weed hosts. Phytopathology 83:393CrossRefGoogle Scholar
  19. Bourett TM, Howard RJ (1990) In vitro development of penetration structures in the rice blast fungus Magnaporthe grisea. Can J Bot 68:329–342CrossRefGoogle Scholar
  20. Bourett TM, Howard RJ (1992) Actin in penetration pegs of the fungal rice blast pathogen, Magnaporthe grisea. Protoplasma 168:20–26CrossRefGoogle Scholar
  21. Bowyer P, Clarke BR, Lunness P, Daniels MJ, Osbourn AE (1995) Host-range of a plant-pathogenic fungus determined by a saponin detoxifying enzyme. Science 267:371–374PubMedCrossRefGoogle Scholar
  22. Bryan GT, Daniels MJ, Osbourn AE (1995) Comparison of fungi within the Gaeumannomyces-Phialophora complex by analysis of ribosomal DNA sequences. Appl Environ Microbiol 61:681PubMedGoogle Scholar
  23. Bryan GT, Wu K-S, Farrall L et al (2000) A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 12:2033–2046PubMedGoogle Scholar
  24. Bussaban B, Lumyong S, Lumyong P, Hyde KD, McKenzie EHC (2001) Two new species of endophytes (ascomycetes) from Zingiberaceae sporulating in culture. Nova Hedwigia 73:487–493Google Scholar
  25. Cannon PF (1994) The newly recognized family Magnaporthaceae and its interrelationships. Syst Ascomycetum 13:25–42Google Scholar
  26. Cannon PF, Kirk PM (2007) Fungal families of the world. CABI, WallingfordGoogle Scholar
  27. Castlebury LA, Rossman AY, Jaklitsch WJ, Vasilyeva LN (2002) A preliminary overview of the Diaporthales based on large subunit nuclear ribosomal DNA sequences. Mycologia 94:1017–1031PubMedCrossRefGoogle Scholar
  28. Cavara F (1892) Pyricularia oryzae. Fungi Longobardiae exsiccati 2, 49Google Scholar
  29. Chen X, Ronald PC (2011) Innate immunity in rice. Trends Plant Sci 16:451–459PubMedCrossRefGoogle Scholar
  30. Chen X, Shang J, Chen D et al (2006) A B-lectin receptor kinase gene conferring rice blast resistance. Plant J 46:794–804PubMedCrossRefGoogle Scholar
  31. Chen J, Zheng W, Zheng S, Zhang D, Sang W, Chen X, Li G, Lu G, Wang Z (2008) Rac1 is required for pathogenicity and Chm1-dependent conidiogenesis in rice fungal pathogen Magnaporthe grisea. PLoS Pathog 4:e1000202PubMedCrossRefGoogle Scholar
  32. Choi W, Dean RA (1997) The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 9:1973–1983PubMedGoogle Scholar
  33. Chuma I, Shinogi T, Hosogi N, Ikeda K, Nakayashiki H, Park P, Tosa Y (2009) Cytological characteristics of microconidia of Magnaporthe oryzae. J Gen Plant Pathol 75:353–358CrossRefGoogle Scholar
  34. Chuma I, Isobe C, Hotta Y et al (2011) Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog 7(7):e1002147PubMedCrossRefGoogle Scholar
  35. Chumley FG, Valent B (1990) Genetic analysis of melanin deficient, nonpathogenic mutants of Magnaporthe grisea. Mol Plant Microbe Interact 3:135–143CrossRefGoogle Scholar
  36. Clergeot PH, Gourgues M, Cots J, Laurans F, Latorse MP, Pepin R, Tharreau D, Notteghem JL, Lebrun MH (2001) PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proc Natl Acad Sci USA 98:6963–6968PubMedCrossRefGoogle Scholar
  37. Coleman JJ, Mylonakis E (2009) Efflux in fungi: la piece de resistance. PLoS Pathog 5Google Scholar
  38. Collemare J, Pianfetti M, Houlle AE et al (2008) Magnaporthe grisea avirulence gene ACE1 belongs to an infection-specific gene cluster involved in secondary metabolism. New Phytol 179:196–208PubMedCrossRefGoogle Scholar
  39. Couch BC, Kohn LM (2002) A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94:683–693PubMedCrossRefGoogle Scholar
  40. Couch BC, Fudal I, Lebrun MH, Tharreau D, Valent B, van Kim P, Notteghem JL, Kohn LM (2005) Origins of host-specific populations of the blast pathogen Magnaporthe oryzae in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics 170:613–630PubMedCrossRefGoogle Scholar
  41. Crombie L, Crombie WML, Whiting DA (1984) Isolation of avenacins A-1, A-2, B-1, B-2 from oat roots: structures of their “aglycones”, the avenestergenins. J Chem Soc Chem Comm 4:244–246CrossRefGoogle Scholar
  42. Crombie WML, Crombie L, Green JB, Lucas JA (1986) Pathogenicity of “take-all” fungus to oats: its relationship to the concentration and detoxification of the four avenacins. Phytochemistry 9:2075–2083CrossRefGoogle Scholar
  43. Cruz CD, Bockus WW, Stack JP, Tang XY, Valent B, Pedley KF, Peterson GL (2012) Preliminary assessment of resistance among U.S. Wheat cultivars to the triticum pathotype of Magnaporthe oryzae. Plant Dis 96:1501–1505CrossRefGoogle Scholar
  44. Dagdas YF, Yoshino K, Dagdas G, Ryder LS, Bielska E, Steinberg G, Talbot NJ (2012) Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science 336:1590–1595PubMedCrossRefGoogle Scholar
  45. De Jong JC, McCormack BJ, Smirnoff N, Talbot NJ (1997) Glycerol generates turgor in rice blast. Nature 389:244–245CrossRefGoogle Scholar
  46. Dean RA (1997) Signal pathways and appressorium morphogenesis. Annu Rev Phytopathol 35:211–234PubMedCrossRefGoogle Scholar
  47. Dean RA, Talbot NJ, Ebbole DJ et al (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986PubMedCrossRefGoogle Scholar
  48. Dean R, Van Kan JAL, Pretorius ZA et al (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430PubMedCrossRefGoogle Scholar
  49. Dennis RWG (1960) British cup fungi and their allies: an introduction to the Ascomycetes. Ray Society, LondonGoogle Scholar
  50. DeZwaan TM, Carroll AM, Valent B, Sweigard JA (1999) Magnaporthe grisea Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11:2013–2030PubMedGoogle Scholar
  51. Dixon KP, Xu JR, Smirnoff N, Talbot NJ (1999) Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell 11:2045–2058PubMedGoogle Scholar
  52. Donofrio NM, Oh Y, Lundy R, Pan H, Brown DE, Jeong JS, Coughlan S, Mitchell TK, Dean RA (2006) Global gene expression during nitrogen starvation in the rice blast fungus, Magnaporthe grisea. Fungal Genet Biol 43:605–617PubMedCrossRefGoogle Scholar
  53. Dori S, Solel Z, Barash I (1995) Cell wall-degrading enzymes produced by Gaeumannomyces graminis var. tritici in vitro and in vivo. Physiol Mol Plant Pathol 46:189–198CrossRefGoogle Scholar
  54. Dufresne M, Osbourn AE (2001) Definition of tissue-specific and general requirements for plant infection in a phytopathogenic fungus. Mol Plant Microbe Interact 14:300–307PubMedCrossRefGoogle Scholar
  55. Etxebeste O, Garzia A, Espeso EA, Ugalde U (2010) Aspergillus nidulans asexual development: making the most of cellular modules. Trends Microbiol 18:569–576PubMedCrossRefGoogle Scholar
  56. Fang EGC, Dean RA (2000) Site-directed mutagenesis of the magB gene affects growth and development in Magnaporthe grisea. Mol Plant Microbe Interact 13:1214–1227PubMedCrossRefGoogle Scholar
  57. FAO (Food and Agriculture Organization) of the United Nations (2009) The state of food insecurity in the world economic crises – impacts and lessons learned.
  58. Fernandez J, Wilson RA (2012) Why no feeding frenzy? mechanisms of nutrient acquisition and utilization during infection by the rice blast fungus Magnaporthe oryzae. Mol Plant Microbe Interact 25:1286–1293PubMedCrossRefGoogle Scholar
  59. Fernandez J, Wright JD, Hartline D, Quispe CF, Madayiputhiya N, Wilson RA (2012) Principles of carbon catabolite repression in the rice blast fungus: Tps, 1, Nmr1–3, and a MATE-family pump regulate glucose metabolism during infection. PLoS Genet 8:e1002673PubMedCrossRefGoogle Scholar
  60. Field B, Jordan F, Osbourn A (2006) First encounters – deployment of defence-related natural products by plants. New Phytol 172:193–207PubMedCrossRefGoogle Scholar
  61. Franceschetti M, Bueno E, Wilson RA, Tucker SL, Gómez-Mena C, Calder G, Sesma A (2011) Fungal virulence and development is regulated by alternative pre-mRNA 3′ end processing in Magnaporthe oryzae. PLoS Pathog 7:e1002441PubMedCrossRefGoogle Scholar
  62. Frederick BA, Caesar-Tonthat TC, Wheeler MH, Sheehan KB, Edens WA, Henson JM (1999) Isolation and characterisation of Gaeumannomyces graminis var. graminis melanin mutants. Mycol Res 103:99–110CrossRefGoogle Scholar
  63. Freeman J, Ward E (2004) Gaeumannomyces graminis, the take-all fungus and its relatives. Mol Plant Pathol 5:235–252PubMedCrossRefGoogle Scholar
  64. Froeliger EH, Carpenter BE (1996) NUT1, a major nitrogen regulatory gene in Magnaporthe grisea, is dispensable for pathogenicity. Mol Gen Genet 251:647–656PubMedGoogle Scholar
  65. Frohlich J, Hyde KD (1999) Biodiversity of palm fungi in the tropics: are global fungal diversity estimates realistic? Biodivers Conserv 8:977–1004CrossRefGoogle Scholar
  66. Fry SC (2004) Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol 161:641–675CrossRefGoogle Scholar
  67. Fudal I, Collemare J, Bohnert HU, Melayah D, Lebrun MH (2007) Expression of Magnaporthe grisea avirulence gene ACE1 is connected to the initiation of appressorium-mediated penetration. Eukaryot Cell 6:546–554PubMedCrossRefGoogle Scholar
  68. Fukumori Y, Nakajima M, Akutsu K (2004) Microconidia act the role as spermatia in the sexual reproduction of Botrytis cinerea. J Gen Plant Pathol 70:256–260CrossRefGoogle Scholar
  69. Fukuoka S, Saka N, Koga H et al (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001PubMedCrossRefGoogle Scholar
  70. Galluzzi L, Kepp O, Kroemer G (2012) Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 13:780–788PubMedCrossRefGoogle Scholar
  71. Gangopadhyay S, Row KVK (1986) Perennation of Pyricularia oryzae briosi et cav. in sclerotial state. Int J Trop Plant Dis 4:187–192Google Scholar
  72. Gilbert MJ, Thornton CR, Wakley GE, Talbot NJ (2006) A P-type ATPase required for rice blast disease and induction of host resistance. Nature 440:535–539PubMedCrossRefGoogle Scholar
  73. Gladfelter AS (2006) Control of filamentous fungal cell shape by septins and formins. Nat Rev Microbiol 4:223–229PubMedCrossRefGoogle Scholar
  74. Goff SA, Ricke D, Lan TH et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100PubMedCrossRefGoogle Scholar
  75. Goh J, Kim KS, Park J, Jeon J, Park SY, Lee YH (2011) The cell cycle gene MoCDC15 regulates hyphal growth, asexual development and plant infection in the rice blast pathogen Magnaporthe oryzae. Fungal Genet Biol 48:784–792PubMedCrossRefGoogle Scholar
  76. Griebel T, Zeier J (2008) Light regulation and daytime dependency of inducible plant defenses in arabidopsis: phytochrome signaling controls systemic acquired resistance rather than local defense. Plant Physiol 147:790–801PubMedCrossRefGoogle Scholar
  77. Guimil S, Chang HS, Zhu T et al (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci USA 102:8066–8070PubMedCrossRefGoogle Scholar
  78. Gupta A, Chattoo BB (2008) Functional analysis of a novel ABC transporter ABC4 from Magnaporthe grisea. FEMS Microbiol Lett 278:22–28PubMedCrossRefGoogle Scholar
  79. Hamer JE, Howard RJ, Chumley F, Valent B (1988) A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 239:288–290PubMedCrossRefGoogle Scholar
  80. Hamer JE, Valent B, Chumley FG (1989) Mutations at the SMO genetic locus affect the shape of diverse cell types in the rice blast fungus. Genetics 122:351–361PubMedGoogle Scholar
  81. Harmon PF, Latin R (2005) Winter survival of the perennial ryegrass pathogen Magnaporthe oryzae in north central Indiana. Plant Dis 89:412–418CrossRefGoogle Scholar
  82. Harmon PF, Dunkle LD, Latin R (2003) A rapid PCR-based method for the detection of Magnaporthe oryzae from infected perennial ryegrass. Plant Dis 87:1072–1076CrossRefGoogle Scholar
  83. Hawksworth DL (2011) A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. MycoKeys 1:7–20CrossRefGoogle Scholar
  84. Hayashi K, Yoshida H (2009) Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J 57:413–425PubMedCrossRefGoogle Scholar
  85. Hayashi N, Inoue H, Kato T et al (2010) Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J 64:498–510PubMedCrossRefGoogle Scholar
  86. Heath MC, Valent B, Howard RJ, Chumley FG (1992) Ultrastructural interactions of one strain of Magnaporthe grisea with goosegrass and weeping lovegrass. Can J Bot 70:779–787CrossRefGoogle Scholar
  87. Hebert TT (1971) Perfect stage of Pyricularia grisea. Phytopathology 61:83–87CrossRefGoogle Scholar
  88. Henson JM (1992) DNA hybridization and polymerase chain-reaction (Pcr) tests for identification of Gaeumannomyces, Phialophora and Magnaporthe isolates. Mycol Res 96:629–636CrossRefGoogle Scholar
  89. Henson JM, Butler MJ, Day AW (1999) The dark side of the mycelium: melanins of phytopathogenic fungi. Annu Rev Phytopathol 37:447–471PubMedCrossRefGoogle Scholar
  90. Heupel S, Roser B, Kuhn H, Lebrun MH, Villalba F, Requena N (2010) Erl1, a novel era-like GTPase from Magnaporthe oryzae, is required for full root virulence and is conserved in the mutualistic symbiont glomus intraradices. Mol Plant Microbe Interact 23:67–81PubMedCrossRefGoogle Scholar
  91. Hogenhout SA, Van der Hoorn RA, Terauchi R, Kamoun S (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant Microbe Interact 22:115–122PubMedCrossRefGoogle Scholar
  92. Hornby D (1998) Take-all disease of cereals: a regional perspective. CAB International, WallingfordGoogle Scholar
  93. Hornby D, Slope DB, Gutteridge RJ, Sivanesan A (1977) Gaeumannomyces-cylindrosporus, a new ascomycete from cereal roots. Trans Br Mycol Soc 69:21–25CrossRefGoogle Scholar
  94. Howard RJ (1997) Breaching the outer barrier – cuticle and cell wall penetration. In: Carroll PTGC (ed) The Mycota V plant relationships, Part A. Springer, Berlin, pp 43–60CrossRefGoogle Scholar
  95. Howard RJ, Valent B (1996) Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol 50:491–512PubMedCrossRefGoogle Scholar
  96. Howard R, Ferrari M, Roach D, Money N (1991) Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA 88:11281–11284PubMedCrossRefGoogle Scholar
  97. Hua LX, Wu JZ, Chen CX et al (2012) The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet 125:1047–1055PubMedCrossRefGoogle Scholar
  98. Idnurm A, Heitman J (2005) Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biol 3:615–626CrossRefGoogle Scholar
  99. Ikeda KI, Nakayashiki H, Kataoka T, Tamba H, Hashimoto Y, Tosa Y, Mayama S (2002) Repeat-induced point mutation (RIP) in Magnaporthe grisea: implications for its sexual cycle in the natural field context. Mol Microbiol 45:1355–1364PubMedCrossRefGoogle Scholar
  100. Inoue I, Namiki F, Tsuge T (2002) Plant colonization by the vascular wilt fungus Fusarium oxysporum requires FOW1, a gene encoding a mitochondrial protein. Plant Cell 14:1869–1883PubMedCrossRefGoogle Scholar
  101. Inoue K, Suzuki T, Ikeda K, Jiang S, Hosogi N, Hyong G-S, Hida S, Yamada T, Park P (2007) Extracellular matrix of Magnaporthe oryzae may have a role in host adhesion during fungal penetration and is digested by matrix metalloproteinases. J Gen Plant Pathol 73:388–398CrossRefGoogle Scholar
  102. Jeon J, Park SY, Chi MH, Choi J, Park J, Rho HS, Kim S, Goh J, Yoo S (2007) Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat Genet 39:561–565PubMedCrossRefGoogle Scholar
  103. Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19:4004–4014PubMedCrossRefGoogle Scholar
  104. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329PubMedCrossRefGoogle Scholar
  105. Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35:1–187Google Scholar
  106. Kang S, Sweigard JA, Valent B (1995) The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol Plant Microbe Interact 8:939–948PubMedCrossRefGoogle Scholar
  107. Kang S, Lebrun MH, Farrall L, Valent B (2001) Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Mol Plant Microbe Interact 14:671–674PubMedCrossRefGoogle Scholar
  108. Kankanala P, Czymmek K, Valent B (2007) Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19:706–724PubMedCrossRefGoogle Scholar
  109. Kato H, Mayama S, Sekine R, Kanazawa E, Izutani Y, Urashima A, Kunoh H (1994) Microconidium formation in Magnaporthe grisea. Ann Phytopathol Soc Jpn 60:175–185CrossRefGoogle Scholar
  110. Kershaw MJ, Wakley G, Talbot NJ (1998) Complementation of the Mpg1 mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins. EMBO J 17:3838–3849PubMedCrossRefGoogle Scholar
  111. Khang CH, Berruyer R, Giraldo MC, Kankanala P, Park SY, Czymmek K, Kang S, Valent B (2010) Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22:1388–1403PubMedCrossRefGoogle Scholar
  112. Kim KS, Lee YH (2012) Gene expression profiling during conidiation in the rice blast pathogen Magnaporthe oryzae. PLoS One 7Google Scholar
  113. Kim S, Ahn IP, Rho HS, Lee YH (2005) MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Mol Microbiol 57:1224–1237PubMedCrossRefGoogle Scholar
  114. Kim S, Park SY, Kim KS et al (2009) Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae. PLoS Genet 5(12):e1000757PubMedCrossRefGoogle Scholar
  115. Kim C, Ye F, Ginsberg MH (2011a) Regulation of integrin activation. Annu Rev Cell Dev Biol 27:321–345PubMedCrossRefGoogle Scholar
  116. Kim S, Singh P, Park J, Park S, Friedman A, Zheng T, Lee YH, Lee K (2011b) Genetic and molecular characterization of a blue light photoreceptor MGWC-1 in Magnaporthe oryzae. Fungal Genet Biol 48:400–407PubMedCrossRefGoogle Scholar
  117. Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Ainsworth and bisby’s dictionary of the fungi, 9th edn. CABI, WallingfordGoogle Scholar
  118. Kloppholz S, Kuhn H, Requena N (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 21:1204–1209PubMedCrossRefGoogle Scholar
  119. Kohlmeyer J, Volkmannkohlmeyer B (1995) Fungi on Juncus roemerianus.1. Trichocladium medullare sp. nov. Mycotaxon 53:349–353Google Scholar
  120. Kolattukudy PE (1985) Enzymatic penetration of the plant cuticle by fungal pathogens. Annu Rev Phytopathol 23:223–250CrossRefGoogle Scholar
  121. Kulkarni RD, Thon MR, Pan H, Dean RA (2005) Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol 6:R24PubMedCrossRefGoogle Scholar
  122. Kumar J, Nelson RJ, Zeigler RS (1999) Population structure and dynamics of Magnaporthe grisea in the Indian Himalayas. Genetics 152:971–984PubMedGoogle Scholar
  123. Kwon NJ, Garzia A, Espeso EA, Ugalde U, Yu JH (2010) FlbC is a putative nuclear C2H2 transcription factor regulating development in Aspergillus nidulans. Mol Microbiol 77:1203–1219PubMedCrossRefGoogle Scholar
  124. Lambou K, Malagnac F, Barbisan C, Tharreau D, Lebrun M-H, Silar P (2008) The crucial role of the Pls1 tetraspanin during ascospore germination in Podospora anserina provides an example of the convergent evolution of morphogenetic processes in fungal plant pathogens and saprobes. Eukaryot Cell 7:1809–1818PubMedCrossRefGoogle Scholar
  125. Landschoot PJ, Jackson N (1989a) Magnaporthe poae sp. nov., a hyphopodiate fungus with a Phialophora anamorph from grass roots in the United States. Mycol Res 93:59–62CrossRefGoogle Scholar
  126. Landschoot PJ, Jackson N (1989b) Gaeumannomyces incrustans sp. nov., a root-infecting hyphopodiate fungus from grass roots in the United States. Mycol Res 93:55–58CrossRefGoogle Scholar
  127. Lau G, Hamer JE (1996) Regulatory genes controlling MPG1 expression and pathogenicity in the rice blast fungus Magnaporthe grisea. Plant Cell 8:771–781PubMedGoogle Scholar
  128. Lau GW, Hamer JE (1998) Acropetal: a genetic locus required for conidiophore architecture and pathogenicity in the rice blast fungus. Fungal Genet Biol 24:228–239PubMedCrossRefGoogle Scholar
  129. Lee FN, Jackson MA, Walker NR (2000) Characteristics of Pyricularia grisea “microsclerotia” produced in shaked culture. In: Norman RJ, Beyrouty CA (eds) BR wells rice research studies 1999. University of Arkansas, Fayetteville, AR, pp 475–479Google Scholar
  130. Lee K, Singh P, Chung WC, Ash J, Kim TS, Hang L, Park S (2006) Light regulation of asexual development in the rice blast fungus, Magnaporthe oryzae. Fungal Genet Biol 43:694–706PubMedCrossRefGoogle Scholar
  131. Lee SK, Song MY, Seo YS et al (2009) Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics 181:1627–1638PubMedCrossRefGoogle Scholar
  132. Leung H, Borromeo E, Bernardo M, Notteghem JL (1988) Genetic analysis of virulence in the rice blast fungus Magnaporthe grisea. Phytopathology 78:1227–1233CrossRefGoogle Scholar
  133. Li L, Xue CY, Bruno K, Nishimura M, Xu JR (2004) Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea. Mol Plant Microbe Interact 17:547–556PubMedCrossRefGoogle Scholar
  134. Li L, Ding SL, Sharon A, Orbach M, Xu JR (2007) Mir1 is highly upregulated and localized to nuclei during infectious hyphal growth in the rice blast fungus. Mol Plant Microbe Interact 20:448–458PubMedCrossRefGoogle Scholar
  135. Li W, Wang BH, Wu J et al (2009) The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant Microbe Interact 22:411–420PubMedCrossRefGoogle Scholar
  136. Li GT, Zhou XY, Kong LG, Wang YL, Zhang H, Zhu H, Mitchell TK, Dean RA, Xu JR (2011) MoSfl1 is important for virulence and heat tolerance in Magnaporthe oryzae. PLoS One 6:e19951PubMedCrossRefGoogle Scholar
  137. Lin F, Chen S, Que ZQ, Wang L, Liu XQ, Pan QH (2007) The blast resistance gene Pi37 encodes a nucleotide binding site-leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics 177:1871–1880PubMedCrossRefGoogle Scholar
  138. Linder MB, Szilvay GR, Nakari-Setala T, Penttila ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896PubMedCrossRefGoogle Scholar
  139. Litvintseva AP, Henson JM (2002) Cloning, characterization, and transcription of three laccase genes from Gaeumannomyces graminis var. tritici, the take-all fungus. Appl Environ Microbiol 68:1305–1311PubMedCrossRefGoogle Scholar
  140. Liu XQ, Lin F, Wang L, Pan QH (2007) The in silico map-based cloning of Pi36, a rice coiled-coil-nucleotide-binding site-leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics 176:2541–2549PubMedCrossRefGoogle Scholar
  141. Liu JL, Wang XJ, Mitchell T, Hu YJ, Liu XL, Dai LY, Wang GL (2010a) Recent progress and understanding of the molecular mechanisms of the rice-Magnaporthe oryzae interaction. Mol Plant Pathol 11:419–427PubMedCrossRefGoogle Scholar
  142. Liu WD, Xie SY, Zhao XH, Chen X, Zheng WH, Lu GD, Xu JR, Wang ZH (2010b) A homeobox gene is essential for conidiogenesis of the rice blast fungus Magnaporthe oryzae. Mol Plant Microbe Interact 23:366–375PubMedCrossRefGoogle Scholar
  143. Liu WD, Zhou XY, Li GT, Li L, Kong LG, Wang CF, Zhang HF, Xu JR (2011) Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathog 7Google Scholar
  144. Marcel S, Sawers R, Oakeley E, Angliker H, Paszkowski U (2010) Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae. Plant Cell 22:3177–3187PubMedCrossRefGoogle Scholar
  145. Mehrabi R, Ding S, Xu JR (2008) MADS-box transcription factor Mig1 is required for infectious growth in Magnaporthe grisea. Eukaryot Cell 7:791–799PubMedCrossRefGoogle Scholar
  146. Mendgen K, Hahn M (2002) Plant infection and the establishment of fungal biotrophy. Trends Plant Sci 7:352–356PubMedCrossRefGoogle Scholar
  147. Mengiste T (2012) Plant immunity to necrotrophs. Annu Rev Phytopathol 50(50):267–294PubMedCrossRefGoogle Scholar
  148. Mentlak TA, Kombrink A, Shinya T et al (2012) Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24:322–335PubMedCrossRefGoogle Scholar
  149. Mosquera G, Giraldo MC, Khang CH, Coughlan S, Valent B (2009) Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease. Plant Cell 21:1273–1290PubMedCrossRefGoogle Scholar
  150. Mostowy S, Cossart P (2012) Septins: the fourth component of the cytoskeleton. Nat Rev Mol Cell Biol 13:183–194PubMedGoogle Scholar
  151. Nguyen QB, Kadotani N, Kasahara S, Tosa Y, Mayama S, Nakayashiki H (2008) Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system. Mol Microbiol 68:1348–1365PubMedCrossRefGoogle Scholar
  152. Noguchi MT, Yasuda N, Fujita Y (2006) Evidence of genetic exchange by parasexual recombination and genetic analysis of pathogenicity and mating type of parasexual recombinants in rice blast fungus, Magnaporthe oryzae. Phytopathology 96:746–750PubMedCrossRefGoogle Scholar
  153. Oh Y, Donofrio N, Pan HQ, Coughlan S, Brown DE, Meng SW, Mitchell T, Dean RA (2008) Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae. Genome Biol 9(5):R85PubMedCrossRefGoogle Scholar
  154. Okuyama Y, Kanzaki H, Abe A et al (2011) A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J 66:467–479PubMedCrossRefGoogle Scholar
  155. Olmedo M, Ruger-Herreros C, Corrochano LM (2010a) Regulation by blue light of the fluffy gene encoding a major regulator of conidiation in Neurospora crassa. Genetics 184:651–658PubMedCrossRefGoogle Scholar
  156. Olmedo M, Ruger-Herreros C, Luque EM, Corrochano LM (2010b) A complex photoreceptor system mediates the regulation by light of the conidiation genes con-10 and con-6 in Neurospora crassa. Fungal Genet Biol 47:352–363PubMedCrossRefGoogle Scholar
  157. Osbourn AE, Clarke BR, Lunness P, Scott PR (1994) An oat species lacking avenacin is susceptible to infection by Gaeumannomyces graminis var. tritici. Physiol Mol Plant Pathol 45:457CrossRefGoogle Scholar
  158. Ou SH (1985) Rice diseases, 2nd edn. Commonwealth Mycological Institute, Kew, SurreyGoogle Scholar
  159. Park HS, Yu JH (2012) Genetic control of asexual sporulation in filamentous fungi. Curr Opin Microbiol 15:669–677PubMedCrossRefGoogle Scholar
  160. Park G, Xue C, Zheng L, Lam S, Xu JR (2002) MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea. Mol Plant Microbe Interact 15:183–192PubMedCrossRefGoogle Scholar
  161. Park G, Xue C, Zhao X, Kim Y, Orbach M, Xu J-R (2006) Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. Plant Cell 18:2822–2835PubMedCrossRefGoogle Scholar
  162. Patkar RN, Xue YK, Shui GH, Wenk MR, Naqvi NI (2012) Abc3-mediated efflux of an endogenous digoxin-like steroidal glycoside by Magnaporthe oryzae is necessary for host invasion during blast disease. PLoS Pathog 8:e1002888PubMedCrossRefGoogle Scholar
  163. Qu SH, Liu GF, Zhou B, Bellizzi M, Zeng LR, Dai LY, Han B, Wang GL (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172:1901–1914PubMedCrossRefGoogle Scholar
  164. Ribot C, Hirsch J, Batzergue S, Tharreau D, Notteghem JL, Lebrun MH, Morel JB (2008) Susceptibility of rice to the blast fungus, Magnaporthe grisea. J Plant Physiol 165:114–124PubMedCrossRefGoogle Scholar
  165. Rodrigues FA, Benhamou N, Datnoff LE, Jones JB, Belanger RR (2003) Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance. Phytopathology 93:535–546PubMedCrossRefGoogle Scholar
  166. Rossman AY, Howard RJ, Valent B (1990) Pyricularia grisea, the correct name for the rice blast disease fungus. Mycologia 82:509–512CrossRefGoogle Scholar
  167. Ruger-Herreros C, Rodriguez-Romero J, Fernandez-Barranco R, Olmedo M, Fischer R, Corrochano LM, Canovas D (2011) Regulation of conidiation by light in Aspergillus nidulans. Genetics 188:809–U897PubMedCrossRefGoogle Scholar
  168. Saccardo PA (1880) Fungorum extra-europaeorum Pugillus. Michelia 2:136–149Google Scholar
  169. Saitoh H, Fujisawa S, Ito A, Mitsuoka C, Berberich T, Tosa Y, Asakura M, Takano Y, Terauchi R (2009) SPM1 encoding a vacuole-localized protease is required for infection-related autophagy of the rice blast fungus Magnaporthe oryzae. FEMS Microbiol Lett 300:115–121PubMedCrossRefGoogle Scholar
  170. Saitoh H, Fujisawa S, Mitsuoka C et al (2012) Large-scale gene disruption in Magnaporthe oryzae identifies MC69, a secreted protein required for infection by monocot and dicot fungal pathogens. PLoS Pathog 8(5):e1002711PubMedCrossRefGoogle Scholar
  171. Saleh D, Xu P, Shen Y et al (2012) Sex at the origin: an Asian population of the rice blast fungus Magnaporthe oryzae reproduces sexually. Mol Ecol 21:1330–1344PubMedCrossRefGoogle Scholar
  172. Saunders DG, Dagdas YF, Talbot NJ (2010a) Spatial uncoupling of mitosis and cytokinesis during appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae. Plant Cell 22:2417–2428PubMedCrossRefGoogle Scholar
  173. Saunders DGO, Aves SJ, Talbot NJ (2010b) Cell cycle-mediated regulation of plant infection by the rice blast fungus. Plant Cell 22:497–507PubMedCrossRefGoogle Scholar
  174. Sesma A, Osbourn AE (2004) The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 431:582–586PubMedCrossRefGoogle Scholar
  175. Shang JJ, Tao Y, Chen XW et al (2009) Identification of a new rice blast resistance gene, Pid3, by genomewide comparison of paired nucleotide-binding site-leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics 182:1303–1311PubMedCrossRefGoogle Scholar
  176. Sharma TR, Rai AK, Gupta SK, Singh NK (2010) Broad-spectrum blast resistance gene Pi-k(h) cloned from rice line Tetep designated as Pi54. J Plant Biochem Biotechnol 19:87–89CrossRefGoogle Scholar
  177. Shattil SJ, Kim C, Ginsberg MH (2010) The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 11:288–300PubMedCrossRefGoogle Scholar
  178. Shi Z, Christian D, Leung H (1998) Interactions between spore morphogenetic mutations affect cell types, sporulation, and pathogenesis in Magnaporthe grisea. Mol Plant Microbe Interact 11:199–207PubMedCrossRefGoogle Scholar
  179. Silué D, Tharreau D, Talbot NJ, Clergeot PH, Notteghem JL, Lebrun MH (1998) Identification and characterization of apf1 in a non-pathogenic mutant of the rice blast fungus Magnaporthe grisea which is unable to differentiate appressoria. Physiol Mol Plant Pathol 53:239–251CrossRefGoogle Scholar
  180. Skamnioti P, Gurr SJ (2007) Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence. Plant Cell 19:2674–2689PubMedCrossRefGoogle Scholar
  181. Skamnioti P, Gurr SJ (2009) Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol 27:141–150PubMedCrossRefGoogle Scholar
  182. Soanes DM, Kershaw MJ, Cooley RN, Talbot NJ (2002) Regulation of the MPG1 hydrophobin gene in the rice blast fungus Magnaporthe grisea. Mol Plant Microbe Interact 15:1253–1267PubMedCrossRefGoogle Scholar
  183. Soanes DM, Alam I, Cornell M et al (2008) Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLoS One 3(6):e2300PubMedCrossRefGoogle Scholar
  184. Soanes DM, Chakrabarti A, Paszkiewicz KH, Dawe AL, Talbot NJ (2012) Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae. PLoS Pathog 8:e1002514PubMedCrossRefGoogle Scholar
  185. Springer ML, Yanofsky C (1992) Expression of con genes along the three sporulation pathways of Neurospora crassa. Genes Dev 6:1052–1057PubMedCrossRefGoogle Scholar
  186. Sreedhar L, Kobayashi DY, Bunting TE, Hillman BI, Belanger FC (1999) Fungal proteinase expression in the interaction of the plant pathogen Magnaporthe oryzae with its host. Gene 235:121–129PubMedCrossRefGoogle Scholar
  187. Stergiopoulos I, de Wit PJGM (2009) Fungal effector proteins. Annu Rev Phytopathol 47:233–263PubMedCrossRefGoogle Scholar
  188. Sun CB, Suresh A, Deng YZ, Naqvi NI (2006) A multidrug resistance transporter in magnaporthe is required for host penetration and for survival during oxidative stress. Plant Cell 18:3686–3705PubMedCrossRefGoogle Scholar
  189. Sweigard JA, Chumley FG, Valent B (1992) Disruption of a Magnaporthe grisea cutinase gene. Mol Gen Genet 232:183–190PubMedGoogle Scholar
  190. Sweigard JA, Chumley FG, Carroll AM, Farrall L, Valent B (1995) Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell 7:1221–1233PubMedGoogle Scholar
  191. Talbot NJ (2003) On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol 57:177–202PubMedCrossRefGoogle Scholar
  192. Talbot NJ, Kershaw MJ (2009) The emerging role of autophagy in plant pathogen attack and host defence. Curr Opin Plant Biol 12:444–450PubMedCrossRefGoogle Scholar
  193. Talbot NJ, Ebbole DJ, Hamer JE (1993) Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575–1590PubMedGoogle Scholar
  194. Talbot NJ, Kershaw MJ, Wakley GE, De Vries OMH, Wessels JGH, Hamer JE (1996) MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaportha grisea. Plant Cell 8:985–999PubMedGoogle Scholar
  195. Talbot NJ, McCafferty HRK, Ma M, Moore K, Hamer JE (1997) Nitrogen starvation of the rice blast fungus Magnaporthe grisea may act as an environmental cue for disease symptom expression. Physiol Mol Plant Pathol 50:179–198CrossRefGoogle Scholar
  196. Tamasloukht M, Sejalon-Delmas N, Kluever A, Jauneau A, Roux C, Becard G, Franken P (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol 131:1468–1478PubMedCrossRefGoogle Scholar
  197. Tanzer MM, Arst HN, Skalchunes AR, Coffin M, Darveaux BA, Heiniger RW, Shuster JR (2003) Global nutritional profiling for mutant and chemical mode-of-action analysis in filamentous fungi. Funct Integr Genomics 3:160–170PubMedCrossRefGoogle Scholar
  198. Thines E, Weber RWS, Talbot NJ (2000) MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12:1703–1718PubMedGoogle Scholar
  199. Thinlay X, Finckh MR, Bordeos AC, Zeigler RS (2000) Effects and possible causes of an unprecedented rice blast epidemic on the traditional farming system of Bhutan. Agric Ecosyst Environ 78:237–248CrossRefGoogle Scholar
  200. Thongkantha S, Jeewon R, Vijaykrishna D, Lumyong S, McKenzie EHC, Hyde KD (2009) Molecular phylogeny of Magnaporthaceae (Sordariomycetes) with a new species Ophioceras chiangdaoense from Dracaena loureiroi in Thailand. Fungal Divers 34:157–173Google Scholar
  201. Tredway LP (2006) Genetic relationships among Magnaporthe oryzae isolates from turfgrass hosts and relative susceptibility of “Penncross” and “Penn A-4” creeping bentgrass. Plant Dis 90:1531–1538CrossRefGoogle Scholar
  202. Tsurushima T, Don LD, Kawashima K, Murakami J, Nakayashiki H, Tosa Y, Mayama S (2005) Pyrichalasin H production and pathogenicity of Digitaria-specific isolates of Pyricularia grisea. Mol Plant Pathol 6:605–613PubMedCrossRefGoogle Scholar
  203. Tsurushima T, Minami Y, Miyagawa H, Nakayashiki H, Tosa Y, Mayama S (2010) Induction of chlorosis, ROs generation and cell death by a toxin isolated from Pyricularia oryzae. Biosci Biotechnol Biochem 74:2220–2225PubMedCrossRefGoogle Scholar
  204. Tucker SL, Talbot NJ (2001) Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu Rev Phytopathol 39:385–418PubMedCrossRefGoogle Scholar
  205. Tucker SL, Besi MI, Galhano R, Franceschetti M, Goetz S, Lenhert S, Osbourn A, Sesma A (2010) Common genetic pathways regulate organ-specific infection-related development in the rice blast fungus. Plant Cell 22:953–972PubMedCrossRefGoogle Scholar
  206. Ulrich K, Augustin C, Werner A (2000) Identification and characterization of a new group of root-colonizing fungi within the Gaeumannomyces-Phialophora complex. New Phytol 145:127–136CrossRefGoogle Scholar
  207. Urban M, Bhargava T, Hamer JE (1999) An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO J 18:512–521PubMedCrossRefGoogle Scholar
  208. Valent B, Chumley FG (1991) Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Annu Rev Phytopathol 29:443–467PubMedCrossRefGoogle Scholar
  209. Valent B, Farrall L, Chumley F (1991) Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses. Genetics 127:87–101PubMedGoogle Scholar
  210. Vasilyeva LN (1998) Nizshie Rasteniya, Griby i Mokhoobraznye Dalnego Vostoka Rossii. Pirenomitsety i Lokuloaskomitsety, Sankt PetersburgGoogle Scholar
  211. Veneault-Fourrey C, Barooah M, Egan M, Wakley G, Talbot NJ (2006) Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 312:580–583PubMedCrossRefGoogle Scholar
  212. Walker J (1972) Type studies on Gaeumannomyces graminis and related fungi. Trans Br Mycol Soc 58:427–457CrossRefGoogle Scholar
  213. Walker J (1980) Gaeumannomyces, Linocarpon, Ophiobolus and several other genera of scolecospored ascomycetes and Phialophora conidial states, with a note on hyphopodia. Mycotaxon 11:1–129Google Scholar
  214. Wang Z-X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T (1999) The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J 19:55–64PubMedCrossRefGoogle Scholar
  215. Wang ZY, Thornton CR, Kershaw MJ, Debao L, Talbot NJ (2003) The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Mol Microbiol 47:1601–1612PubMedCrossRefGoogle Scholar
  216. Wilson RA, Jenkinson JM, Gibson RP, Littlechild JA, Wang ZY, Talbot NJ (2007) Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. EMBO J 26:3673–3685PubMedCrossRefGoogle Scholar
  217. Wilson RA, Gibson RP, Quispe CF, Littlechild JA, Talbot NJ (2010) An NADPH-dependent genetic switch regulates plant infection by the rice blast fungus. Proc Natl Acad Sci USA 107:21902–21907PubMedCrossRefGoogle Scholar
  218. Wong PTW (2002) Gaeumannomyces wongoonoo sp nov., the cause of a patch disease of buffalo grass (St Augustine grass). Mycol Res 106:857–862CrossRefGoogle Scholar
  219. Wong PTW, Dong C, Stirling AM, Dickinson ML (2012) Two new Magnaporthe species pathogenic to warm-season turfgrassses in Australia. Australas Plant Pathol 41:321–329CrossRefGoogle Scholar
  220. Xiao JZ, Ohshima A, Kamakura T, Ishiyama T (1994) Extracellular glycoprotein(s) associated with cellular differentiation in Magnaporthe grisea. Mol Plant Microbe Interact 7:639CrossRefGoogle Scholar
  221. Xu JR, Hamer JE (1996) MAP kinase and cAMP signalling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev 10:2696–2706PubMedCrossRefGoogle Scholar
  222. Xu JR, Urban M, Sweigard JA, Hamer JE (1997) The CPKA Gene of Magnaporthe grisea is essential for appressorial penetration. Mol Plant Microbe Interact 10:187–194CrossRefGoogle Scholar
  223. Xu JR, Staiger CJ, Hamer JE (1998) Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc Natl Acad Sci USA 95:12713–12718PubMedCrossRefGoogle Scholar
  224. Xue C, Park G, Choi W, Zheng L, Dean RA, Xu J-R (2002) Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus. Plant Cell 14:2107–2119PubMedCrossRefGoogle Scholar
  225. Xue MF, Yang J, Li ZG et al (2012) Comparative analysis of the genomes of two field isolates of the rice blast fungus Magnaporthe oryzae. PLoS Genet 8(8):e1002869PubMedCrossRefGoogle Scholar
  226. Yang J, Zhao XY, Sun J, Kang ZS, Ding SL, Xu JR, Peng YL (2010) A novel protein com1 is required for normal conidium morphology and full virulence in Magnaporthe oryzae. Mol Plant Microbe Interact 23:112–123PubMedCrossRefGoogle Scholar
  227. Yao JM, Wang YC, Zhu YG (1992) A new variety of the pathogen of maize take-all. Acta Mycologica Sinica 11:99–104Google Scholar
  228. Yoshida K, Saitoh H, Fujisawa S et al (2009) Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21:1573–1591PubMedCrossRefGoogle Scholar
  229. You MP, Lanoiselet V, Wang CP, Shivas RG, Li YP, Barbetti MJ (2012) First report of rice blast (Magnaporthe oryzae) on rice (Oryza sativa) in Western Australia. Plant Dis 96:1228–1228CrossRefGoogle Scholar
  230. Yu J, Hu S, Wang J et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92PubMedCrossRefGoogle Scholar
  231. Yuan B, Zhai C, Wang WJ, Zeng XS, Xu XK, Hu HQ, Lin F, Wang L, Pan QH (2011) The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet 122:1017–1028PubMedCrossRefGoogle Scholar
  232. Zeigler RS (1998) Recombination in Magnaporthe grisea. Annu Rev Phytopathol 36:249–276PubMedCrossRefGoogle Scholar
  233. Zhai C, Lin F, Dong ZQ, He XY, Yuan B, Zeng XS, Wang L, Pan QH (2011) The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol 189:321–334PubMedCrossRefGoogle Scholar
  234. Zhang HF, Liu KY, Zhang X et al (2011a) Two phosphodiesterase genes, PDEL and PDEH, regulate development and pathogenicity by modulating intracellular cyclic AMP levels in Magnaporthe oryzae. PLoS One 6(2):e17241PubMedCrossRefGoogle Scholar
  235. Zhang HF, Xue CY, Kong LG, Li GT, Xu JR (2011b) A Pmk1-interacting gene is involved in appressorium differentiation and plant infection in Magnaporthe oryzae. Eukaryot Cell 10:1062–1070PubMedCrossRefGoogle Scholar
  236. Zhang N, Zhao S, Shen QR (2011c) A six-gene phylogeny reveals the evolution of mode of infection in the rice blast fungus and allied species. Mycologia 103:1267–1276PubMedCrossRefGoogle Scholar
  237. Zhao X, Kim Y, Park G, Xu J-R (2005) A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. Plant Cell 17:1317–1329PubMedCrossRefGoogle Scholar
  238. Zhao XH, Mehrabi R, Xu JR (2007) Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot Cell 6:1701–1714PubMedCrossRefGoogle Scholar
  239. Zhao S, Clarke BB, Shen QR, Zhang LS, Zhang N (2012) Development and application of a TaqMan real-time PCR assay for rapid detection of Magnaporthe oryzae. Mycologia 104:1250–1259PubMedCrossRefGoogle Scholar
  240. Zhou B, Qu SH, Liu GF, Dolan M, Sakai H, Lu GD, Bellizzi M, Wang GL (2006) The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe Interact 19:1216–1228PubMedCrossRefGoogle Scholar
  241. Zhou ZZ, Li GH, Lin CH, He CZ (2009) Conidiophore stalk-less1 encodes a putative zinc-finger protein involved in the early stage of conidiation and mycelial infection in Magnaporthe oryzae. Mol Plant Microbe Interact 22:402–410PubMedCrossRefGoogle Scholar
  242. Zhou X, Liu W, Wang C, Xu Q, Wang Y, Ding S, Xu JR (2011) A MADS-box transcription factor MoMcm1 is required for male fertility, microconidium production and virulence in Magnaporthe oryzae. Mol Microbiol 80:33–53PubMedCrossRefGoogle Scholar
  243. Zhou XY, Zhang HF, Li GT, Shaw B, Xu JR (2012) The cyclase-associated protein cap1 is important for proper regulation of infection-related morphogenesis in Magnaporthe oryzae. PLoS Pathog 8Google Scholar
  244. Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20:10–16PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Adriana Illana
    • 1
  • Julio Rodriguez-Romero
    • 1
  • Ane Sesma
    • 1
    Email author
  1. 1.Centre for Plant Biotechnology and Genomics (CBGP)Universidad Politécnica de MadridPozuelo de Alarcón, MadridSpain

Personalised recommendations