Methods in Fungal Genetics

  • Kevin McCluskey
  • Aric WiestEmail author
Part of the Soil Biology book series (SOILBIOL, volume 36)


The myriad uses of filamentous and yeastlike fungi have spawned industry and investigation touching on every aspect of human endeavor. Much like the domestication of livestock and crop plants, humans have domesticated and improved fungi for specific and general use. In the modern biotechnological era, these improvements include strain characterization and standardization as well as strain improvement through genetic and molecular methods. Underpinning this improvement are biological materials whose shared use comprises a molecular toolkit for manipulation of filamentous fungi. These include various dominant and recessive selectable markers, gene targeting systems, protein expression and tagging vectors, and the mutated or engineered strains designed for these vectors. Some of these are based on features of the fungal lifestyle, while others were imported by analogy from bacterial, plant, or animal systems. Together they comprise a flexible and powerful molecular genetic framework for the development of highly productive strains and culture systems as fungi are used as foundations of the bio-economy of the twenty-first century.


Filamentous Fungus Selectable Marker Aspergillus Nidulans Strain Improvement Mitotic Recombination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akins RA, Lambowitz AM (1985) General method for cloning Neurospora crassa nuclear genes by complementation of mutants. Mol Cell Biol 5(9):2272–2278PubMedGoogle Scholar
  2. Alloway JL (1932) The transformation in vitro of R pneumococci into S forms of different specific types by the use of filtered pneumococcus extracts. J Exp Med 55(1):91–99PubMedCrossRefGoogle Scholar
  3. Andersen MR, Salazar MP, Schaap PJ, van de Vondervoort PJ, Culley D, Thykaer J, Frisvad JC, Nielsen KF, Albang R, Albermann K, Berka RM, Braus GH, Braus-Stromeyer SA, Corrochano LM, Dai Z, van Dijck PW, Hofmann G, Lasure LL, Magnuson JK, Menke H, Meijer M, Meijer SL, Nielsen JB, Nielsen ML, van Ooyen AJ, Pel HJ, Poulsen L, Samson RA, Stam H, Tsang A, van den Brink JM, Atkins A, Aerts A, Shapiro H, Pangilinan J, Salamov A, Lou Y, Lindquist E, Lucas S, Grimwood J, Grigoriev IV, Kubicek CP, Martinez D, van Peij NN, Roubos JA, Nielsen J, Baker SE (2011) Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res 21(6):885–897. doi: 10.1101/gr.112169.110 PubMedCrossRefGoogle Scholar
  4. Aramayo R, Metzenberg R (1996) Gene replacements at the his-3 locus of Neurospora crassa. Fungal Genet Newsl 43:9–13Google Scholar
  5. Arie T, Christiansen S, Yoder O, Turgeon B (1997) Efficient cloning of ascomycete mating type genes by PCR amplification of the conserved MAT HMG box. Fungal Genet Biol 21(1):118–130PubMedCrossRefGoogle Scholar
  6. Arratia-Quijada J, Sanchez O, Scazzocchio C, Aguirre J (2012) FlbD, a Myb Transcription factor of Aspergillus nidulans, is uniquely involved in both asexual and sexual differentiation. Eukaryot Cell 11(9):1132–1142. doi: 10.1128/EC.00101-12 PubMedCrossRefGoogle Scholar
  7. Atwood KC, Mukai F (1954) Survival and mutation in Neurospora exposed at nuclear detonations. Am Nat 88:295–314CrossRefGoogle Scholar
  8. Avalos J, Geever RF, Case ME (1989) Bialaphos resistance as a dominant selectable marker in Neurospora crassa. Curr Genet 16(5–6):369–372PubMedCrossRefGoogle Scholar
  9. Ballance DJ, Buxton FP, Turner G (1983) Transformation of Aspergillus nidulans by the orotidine-5′-phosphate decarboxylase gene of Neurospora crassa. Biochem Biophys Res Commun 112(1):284–289, doi:0006-291X(83)91828-4PubMedCrossRefGoogle Scholar
  10. Bardiya N, Alexander WG, Perdue TD, Barry EG, Metzenberg RL, Pukkila PJ, Shiu PK (2008) Characterization of interactions between and among components of the meiotic silencing by unpaired DNA machinery in Neurospora crassa using bimolecular fluorescence complementation. Genetics 178(1):593–596. doi: 10.1534/genetics.107.079384 PubMedCrossRefGoogle Scholar
  11. Beadle GW, Tatum EL (1941) Genetic control of biochemical reactions in Neurospora. Proc Natl Acad Sci U S A 27(11):499–506PubMedCrossRefGoogle Scholar
  12. Beggs JD (1978) Transformation of yeast by a replicating hybrid plasmid. Nature 275(5676):104–109PubMedCrossRefGoogle Scholar
  13. Bej AK, Perlin MH (1989) A high efficiency transformation system for the basidiomycete Ustilago violacea employing hygromycin resistance and lithium-acetate treatment. Gene 80(1):171–176, doi:0378-1119(89)90263-1PubMedCrossRefGoogle Scholar
  14. Bennett JW, Chung KT (2001) Alexander Fleming and the discovery of penicillin. Adv Appl Microbiol 49:163–184PubMedCrossRefGoogle Scholar
  15. Berepiki A, Lichius A, Shoji JY, Tilsner J, Read ND (2010) F-actin dynamics in Neurospora crassa. Eukaryot Cell 9(4):547–557. doi: 10.1128/EC.00253-09 PubMedCrossRefGoogle Scholar
  16. Beri RK, Turner G (1987) Transformation of Penicillium chrysogenum using the Aspergillus nidulans amdS gene as a dominant selective marker. Curr Genet 11(8):639–641PubMedCrossRefGoogle Scholar
  17. Betts MF, Tucker SL, Galadima N, Meng Y, Patel G, Li L, Donofrio N, Floyd A, Nolin S, Brown D, Mandel MA, Mitchell TK, Xu JR, Dean RA, Farman ML, Orbach MJ (2007) Development of a high throughput transformation system for insertional mutagenesis in Magnaporthe oryzae. Fungal Genet Biol 44(10):1035–1049. doi: 10.1016/j.fgb.2007.05.001 PubMedCrossRefGoogle Scholar
  18. Blakeslee AF (1904) Zygospore formation a sexual process. Science 19(492):864–866. doi: 10.1126/science.19.492.864 PubMedCrossRefGoogle Scholar
  19. Bohlin L, Goransson U, Alsmark C, Weden C, Backlund A (2010) Natural products in modern life science. Phytochem Rev 9(2):279–301. doi: 10.1007/s11101-009-9160-6 PubMedCrossRefGoogle Scholar
  20. Bonner JT (1944) A descriptive study of the development of the slime mold Dictyostelium discoideum. Am J Bot 31(3):175–182CrossRefGoogle Scholar
  21. Bowden RL, Leslie JF (1992) Nitrate-nonutilizing mutants of Gibberella zeae (Fusarium graminearum) and their use in determining vegetative compatibility. Exp Mycol 16(4):308–315CrossRefGoogle Scholar
  22. Bowman BJ, Draskovic M, Freitag M, Bowman EJ (2009) Structure and distribution of organelles and cellular location of calcium transporters in Neurospora crassa. Eukaryot Cell 8(12):1845–1855. doi: 10.1128/EC.00174-09 PubMedCrossRefGoogle Scholar
  23. Cambareri EB, Kinsey JA (1994) A simple and efficient system for targeting DNA to the am locus of Neurospora crassa. Gene 142(2):219–224PubMedCrossRefGoogle Scholar
  24. Cambareri EB, Jensen BC, Schabtach E, Selker EU (1989) Repeat-induced G-C to A-T mutations in Neurospora. Science 244(4912):1571–1575PubMedCrossRefGoogle Scholar
  25. Campbell EI, Unkles SE, Macro JA, van den Hondel C, Contreras R, Kinghorn JR (1989) Improved transformation efficiency of Aspergillus niger using the homologous niaD gene for nitrate reductase. Curr Genet 16(1):53–56PubMedCrossRefGoogle Scholar
  26. Campbell JW, Enderlin CS, Selitrennikoff CP (1994) Vectors for expression and modification of cDNA sequences in Neurospora crassa. Fungal Genet Newsl 41:20–21Google Scholar
  27. Caroll AM, Sweigard J, Valent B (1994) Improved vectors for selecting resistance to hygromycin. Fungal Genet Newsl 41:22Google Scholar
  28. Carvalho ND, Arentshorst M, Jin Kwon M, Meyer V, Ram AF (2010) Expanding the ku70 toolbox for filamentous fungi: establishment of complementation vectors and recipient strains for advanced gene analyses. Appl Microbiol Biotechnol 87(4):1463–1473. doi: 10.1007/s00253-010-2588-1 PubMedCrossRefGoogle Scholar
  29. Case ME (1982) Transformation of Neurospora crassa utilizing recombinant plasmid DNA. Basic Life Sci 19:87–100PubMedGoogle Scholar
  30. Case ME, Schweizer M, Kushner SR, Giles NH (1979) Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA. Proc Natl Acad Sci U S A 76(10):5259–5263PubMedCrossRefGoogle Scholar
  31. Chang PK (2008) A highly efficient gene-targeting system for Aspergillus parasiticus. Lett Appl Microbiol 46(5):587–592. doi: 10.1111/j.1472-765X.2008.02345.x PubMedCrossRefGoogle Scholar
  32. Chang PK, Horn BW, Dorner JW (2009) Clustered genes involved in cyclopiazonic acid production are next to the aflatoxin biosynthesis gene cluster in Aspergillus flavus. Fungal Genet Biol 46(2):176–182. doi: 10.1016/j.fgb.2008.11.002 PubMedCrossRefGoogle Scholar
  33. Chen C, Smye SW, Robinson MP, Evans JA (2006) Membrane electroporation theories: a review. Med Biol Eng Comput 44(1–2):5–14. doi: 10.1007/s11517-005-0020-2 PubMedCrossRefGoogle Scholar
  34. Chiang YM, Meyer KM, Praseuth M, Baker SE, Bruno KS, Wang CC (2011) Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-gamma-pyrone. Fungal Genet Biol 48(4):430–437. doi: 10.1016/j.fgb.2010.12.001 PubMedCrossRefGoogle Scholar
  35. Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P (1992) Multifunctional yeast high-copy-number shuttle vectors. Gene 110(1):119–122, doi:0378-1119(92)90454-WPubMedCrossRefGoogle Scholar
  36. Chung CT, Niemela SL, Miller RH (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86(7):2172–2175PubMedCrossRefGoogle Scholar
  37. Cogoni C, Irelan JT, Schumacher M, Schmidhauser TJ, Selker EU, Macino G (1996) Transgene silencing of the al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interactions or DNA methylation. EMBO J 15(12):3153–3163PubMedGoogle Scholar
  38. Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC, Grimwood J, Schmutz J, Taga M, White GJ, Zhou S, Schwartz DC, Freitag M, Ma LJ, Danchin EG, Henrissat B, Coutinho PM, Nelson DR, Straney D, Napoli CA, Barker BM, Gribskov M, Rep M, Kroken S, Molnar I, Rensing C, Kennell JC, Zamora J, Farman ML, Selker EU, Salamov A, Shapiro H, Pangilinan J, Lindquist E, Lamers C, Grigoriev IV, Geiser DM, Covert SF, Temporini E, Vanetten HD (2009) The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet 5(8):e1000618. doi: 10.1371/journal.pgen.1000618 PubMedCrossRefGoogle Scholar
  39. Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A 103(27):10352–10357. doi: 10.1073/pnas.0601456103 PubMedCrossRefGoogle Scholar
  40. Covert SF (1998) Supernumerary chromosomes in filamentous fungi. Curr Genet 33(5):311–319PubMedCrossRefGoogle Scholar
  41. Covert SF, Kapoor P, Lee M, Briley A, Nairn J (2001) Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycol Res 105(3):259–264CrossRefGoogle Scholar
  42. Croll D, McDonald BA (2012) The accessory genome as a cradle for adaptive evolution in pathogens. PLoS Pathog 8(4):e1002608. doi: 10.1371/journal.ppat.1002608 PubMedCrossRefGoogle Scholar
  43. Daboussi MJ, Djeballi A, Gerlinger C, Blaiseau PL, Bouvier I, Cassan M, Lebrun MH, Parisot D, Brygoo Y (1989) Transformation of seven species of filamentous fungi using the nitrate reductase gene of Aspergillus nidulans. Curr Genet 15(6):453–456PubMedCrossRefGoogle Scholar
  44. de Bekker C, Wiebenga A, Aguilar G, Wosten HA (2009) An enzyme cocktail for efficient protoplast formation in Aspergillus niger. J Microbiol Methods 76(3):305–306. doi: 10.1016/j.mimet.2008.11.001 PubMedCrossRefGoogle Scholar
  45. de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16(9):839–842. doi: 10.1038/nbt0998-839 PubMedCrossRefGoogle Scholar
  46. deBary A (1853) Untersuchungen uber die Brandpilze und die durch sie verursachten Krankheiten der pflanzen mit Rucksicht auf das Getreide und andere Nutzpflanzen. Paul Parey, BerlinGoogle Scholar
  47. Delbruck M, Meissner G (1968) Note on the availability of phycomyces mutants deficient in beta-carotene biosynthesis. Lipids 3(6):562. doi: 10.1007/BF02530904 PubMedCrossRefGoogle Scholar
  48. Diaz-Sanchez V, Estrada AF, Trautmann D, Limon MC, Al-Babili S, Avalos J (2011) Analysis of al-2 mutations in Neurospora. PLoS One 6(7):e21948. doi: 10.1371/journal.pone.0021948 PubMedCrossRefGoogle Scholar
  49. Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16(13):6127–6145PubMedCrossRefGoogle Scholar
  50. Eckert M, Maguire K, Urban M, Foster S, Fitt B, Lucas J, Hammond-Kosack K (2005) Agrobacterium tumefaciens-mediated transformation of Leptosphaeria spp. and Oculimacula spp. with the reef coral gene DsRed and the jellyfish gene gfp. FEMS Microbiol Lett 253(1):67–74. doi: 10.1016/j.femsle.2005.09.041 PubMedCrossRefGoogle Scholar
  51. Ehrlich KC, Scharfenstein LL Jr, Montalbano BG, Chang PK (2008) Are the genes nadA and norB involved in formation of aflatoxin G(1)? Int J Mol Sci 9(9):1717–1729. doi: 10.3390/ijms9091717 PubMedCrossRefGoogle Scholar
  52. Emerson R, Wilson CM (1949) The significance of meiosis in allomyces. Science 110(2847):86–88. doi: 10.1126/science.110.2847.86 PubMedCrossRefGoogle Scholar
  53. Eynck C, Koopmann B, Grunewaldt-Stoecker G, Karlovsky P, von Tiedemann A (2007) Differential interactions of Verticillium longisporum and V. dahliae with Brassica napus detected with molecular and histological techniques. Eur J Plant Pathol 118(3):259–274CrossRefGoogle Scholar
  54. Fincham JR (1989) Transformation in fungi. Microbiol Rev 53(1):148–170PubMedGoogle Scholar
  55. Freitag M, Selker E (2005) Expression and visualization of red fluorescent protein (RFP) in Neurospora crassa. Fungal Genet Newsl 52:14–17Google Scholar
  56. Freitag M, Hickey PC, Raju NB, Selker EU, Read ND (2004) GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genet Biol 41(10):897–910. doi: 10.1016/j.fgb.2004.06.008 PubMedCrossRefGoogle Scholar
  57. Furman JL, Stern S (2011) Climbing atop the shoulders of giants: the impact of institutions on cumulative research. Am Econ Rev 101(5):1933–1963CrossRefGoogle Scholar
  58. Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CP, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422(6934):859–868. doi: 10.1038/nature01554 PubMedCrossRefGoogle Scholar
  59. Garnjobst L, Tatum EL (1967) A survey of new morphological mutants in Neurospora crassa. Genetics 57(3):579–604PubMedGoogle Scholar
  60. Gerami-Nejad M, Berman J, Gale CA (2001) Cassettes for PCR-mediated construction of green, yellow, and cyan fluorescent protein fusions in Candida albicans. Yeast 18(9):859–864. doi: 10.1002/yea.738 PubMedCrossRefGoogle Scholar
  61. Gerami-Nejad M, Hausauer D, McClellan M, Berman J, Gale C (2004) Cassettes for the PCR-mediated construction of regulatable alleles in Candida albicans. Yeast 21(5):429–436. doi: 10.1002/yea.1080 PubMedCrossRefGoogle Scholar
  62. Gerami-Nejad M, Dulmage K, Berman J (2009) Additional cassettes for epitope and fluorescent fusion proteins in Candida albicans. Yeast 26(7):399–406. doi: 10.1002/yea.1674 PubMedCrossRefGoogle Scholar
  63. Gooch VD, Mehra A, Larrondo LF, Fox J, Touroutoutoudis M, Loros JJ, Dunlap JC (2008) Fully codon-optimized luciferase uncovers novel temperature characteristics of the Neurospora clock. Eukaryot Cell 7(1):28–37. doi: 10.1128/EC.00257-07 PubMedCrossRefGoogle Scholar
  64. Gordon CL, Archer DB, Jeenes DJ, Doonan JH, Wells B, Trinci AP, Robson GD (2000) A glucoamylase::GFP gene fusion to study protein secretion by individual hyphae of Aspergillus niger. J Microbiol Methods 42(1):39–48, doi:S0167-7012(00)00170-6PubMedCrossRefGoogle Scholar
  65. Grant DM, Lambowitz AM, Rambosek JA, Kinsey JA (1984) Transformation of Neurospora crassa with recombinant plasmids containing the cloned glutamate dehydrogenase (am) gene: evidence for autonomous replication of the transforming plasmid. Mol Cell Biol 4(10):2041–2051PubMedGoogle Scholar
  66. Griffiths AJ (1995) Natural plasmids of filamentous fungi. Microbiol Rev 59(4):673–685PubMedGoogle Scholar
  67. Hammond TM, Xiao H, Rehard DG, Boone EC, Perdue TD, Pukkila PJ, Shiu PK (2011) Fluorescent and bimolecular-fluorescent protein tagging of genes at their native loci in Neurospora crassa using specialized double-joint PCR plasmids. Fungal Genet Biol 48(9):866–873. doi: 10.1016/j.fgb.2011.05.002 PubMedCrossRefGoogle Scholar
  68. Hammond TM, Rehard DG, Harris BC, Shiu PK (2012) Fine-scale mapping in Neurospora crassa by using genome-wide knockout strains. Mycologia 104(1):321–323. doi: 10.3852/11-062 PubMedCrossRefGoogle Scholar
  69. Hartmann T, Dumig M, Jaber BM, Szewczyk E, Olbermann P, Morschhauser J, Krappmann S (2010) Validation of a self-excising marker in the human pathogen Aspergillus fumigatus by employing the beta-rec/six site-specific recombination system. Appl Environ Microbiol 76(18):6313–6317. doi: 10.1128/AEM.00882-10 PubMedCrossRefGoogle Scholar
  70. Helber N, Requena N (2008) Expression of the fluorescence markers DsRed and GFP fused to a nuclear localization signal in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 177(2):537–548. doi: 10.1111/j.1469-8137.2007.02257.x PubMedGoogle Scholar
  71. Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci U S A 75(4):1929–1933PubMedCrossRefGoogle Scholar
  72. Honda S, Selker EU (2009) Tools for fungal proteomics: multifunctional neurospora vectors for gene replacement, protein expression and protein purification. Genetics 182(1):11–23. doi: 10.1534/genetics.108.098707 PubMedCrossRefGoogle Scholar
  73. Horowitz S (2002) Use of green fluorescent protein-transgenic strains to study pathogenic and nonpathogenic lifestyles in Colletotrichum acutatum. Phytopathology 92:743–749PubMedCrossRefGoogle Scholar
  74. Horowitz NH, Fling M, Macleod H, Sueoka N (1961) A genetic study of two new structural forms of tyrosinase in Neurospora. Genetics 46:1015–1024PubMedGoogle Scholar
  75. Howe HB Jr, Benson EW (1974) A perithecial color mutant of Neurospora crassa. Mol Gen Genet 131(1):79–83PubMedCrossRefGoogle Scholar
  76. Hurst LD (2009) Genetics and the understanding of selection. Nat Rev Genet 10(2):83–93PubMedCrossRefGoogle Scholar
  77. Hurst GD, Werren JH (2001) The role of selfish genetic elements in eukaryotic evolution. Nat Rev Genet 2(8):597–606. doi: 10.1038/35084545 PubMedCrossRefGoogle Scholar
  78. Ishibashi K, Suzuki K, Ando Y, Takakura C, Inoue H (2006) Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (human Lig4 homolog) in Neurospora. Proc Natl Acad Sci U S A 103(40):14871–14876. doi: 10.1073/pnas.0604477103 PubMedCrossRefGoogle Scholar
  79. Ishikawa T (1962) Genetic studies of ad-8 mutants in Neurospora crassa. II. Interallelic complementation at the ad-8 locus. Genetics 47:1755–1770PubMedGoogle Scholar
  80. Jones RN, Gonzalez-Sanchez M, Gonzalez-Garcia M, Vega JM, Puertas MJ (2008) Chromosomes with a life of their own. Cytogenet Genome Res 120(3–4):265–280. doi: 10.1159/000121076 PubMedCrossRefGoogle Scholar
  81. Judelson HS, Spielman LJ, Shattock RC (1995) Genetic mapping and non-Mendelian segregation of mating type loci in the oomycete, Phytophthora infestans. Genetics 141(2):503–512PubMedGoogle Scholar
  82. Jung MK, Wilder IB, Oakley BR (1992) Amino acid alterations in the benA (beta-tubulin) gene of Aspergillus nidulans that confer benomyl resistance. Cell Motil Cytoskeleton 22(3):170–174. doi: 10.1002/cm.970220304 PubMedCrossRefGoogle Scholar
  83. Kawabata T, Inoue H (2007) Detection of physical interactions by immunoprecipitation of FLAG- and HA-tagged proteins expressed at the his-3 locus in Neurospora crassa. Fungal Genet Newsl 54:5–8Google Scholar
  84. Kawai S, Hashimoto W, Murata K (2010) Transformation of Saccharomyces cerevisiae and other fungi: methods and possible underlying mechanism. Bioeng Bugs 1(6):395–403. doi: 10.4161/bbug.1.6.13257 PubMedCrossRefGoogle Scholar
  85. Keller N, Bergstrom G, Yoder O (1990) Effects of genetic transformation on fitness of Cochliobolus heterostrophus. Phytopathology 80(11):1166–1173CrossRefGoogle Scholar
  86. Kelly JM, Hynes MJ (1985) Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans. EMBO J 4(2):475–479PubMedGoogle Scholar
  87. Kinscherf TG, Leong SA (1988) Molecular analysis of the karyotype of Ustilago maydis. Chromosoma 96(6):427–433PubMedCrossRefGoogle Scholar
  88. Kopke K, Hoff B, Kuck U (2010) Application of the Saccharomyces cerevisiae FLP/FRT recombination system in filamentous fungi for marker recycling and construction of knockout strains devoid of heterologous genes. Appl Environ Microbiol 76(14):4664–4674. doi: 10.1128/aem.00670-10 PubMedCrossRefGoogle Scholar
  89. Krappmann S (2006) Tools to study molecular mechanisms of Aspergillus pathogenicity. Trends Microbiol 14(8):356–364. doi: 10.1016/j.tim.2006.06.005 PubMedCrossRefGoogle Scholar
  90. Krappmann S, Bayram O, Braus GH (2005) Deletion and allelic exchange of the Aspergillus fumigatus veA locus via a novel recyclable marker module. Eukaryot Cell 4(7):1298–1307. doi: 10.1128/EC.4.7.1298-1307.2005 PubMedCrossRefGoogle Scholar
  91. Krappmann S, Sasse C, Braus GH (2006) Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end-joining-deficient genetic background. Eukaryot Cell 5(1):212–215. doi: 10.1128/EC.5.1.212-215.2006 PubMedCrossRefGoogle Scholar
  92. Kronstad JW, Staben C (1997) Mating type in filamentous fungi. Annu Rev Genet 31:245–276. doi: 10.1146/annurev.genet.31.1.245 PubMedCrossRefGoogle Scholar
  93. Kuck U, Hoff B (2006) Application of the nourseothricin acetyltransferase gene (nat1) as dominant marker for the transformation of filamentous fungi. Fungal Genet Newsl 53:9–11Google Scholar
  94. Kück U, Hoff B (2006) Application of the nourseothricin acetyltransferase gene (nat1) as dominant marker for the transformation of filamentous fungi. Fungal Genet Newsl 53:9–11Google Scholar
  95. Kurtz MB, Cortelyou MW, Kirsch DR (1986) Integrative transformation of Candida albicans, using a cloned Candida ADE2 gene. Mol Cell Biol 6(1):142–149PubMedGoogle Scholar
  96. Kuwano T, Shirataki C, Itoh Y (2008) Comparison between polyethylene glycol- and polyethylenimine-mediated transformation of Aspergillus nidulans. Curr Genet 54(2):95–103. doi: 10.1007/s00294-008-0204-z PubMedCrossRefGoogle Scholar
  97. Lee DW, Haag JR, Aramayo R (2003) Construction of strains for rapid homokaryon purification after integration of constructs at the histidine-3 (his-3) locus of Neurospora crassa. Curr Genet 43(1):17–23. doi: 10.1007/s00294-002-0366-z PubMedGoogle Scholar
  98. Legerton TL, Yanofsky C (1985) Cloning and characterization of the multifunctional his-3 gene of Neurospora crassa. Gene 39(2–3):129–140, doi:0378-1119(85)90306-3PubMedCrossRefGoogle Scholar
  99. Leslie JF (1981) Inbreeding for isogeneity by backcrossing to a fixed parent in haploid and diploid eukaryotes. Genet Res 37(3):239–252PubMedCrossRefGoogle Scholar
  100. Levine ZA, Vernier PT (2010) Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation. J Membr Biol 236(1):27–36. doi: 10.1007/s00232-010-9277-y PubMedCrossRefGoogle Scholar
  101. Lichius A, Read ND (2010) A versatile set of Lifeact-RFP expression plasmids for live-cell imaging of F-actin in filamentous fungi. Fungal Genet Reports 57:8–14Google Scholar
  102. Lindegren CC (1932) The genetics of Neurospora. II. Segregation of the sex factors in asci of N. crassa, N. sitophila, and N. tetrasperma. Bull Torrey Bot Club 59:119–138CrossRefGoogle Scholar
  103. Lindegren CC (1948) Genetics of the fungi. Annu Rev Microbiol 2(1):47–70. doi: 10.1146/annurev.mi.02.100148.000403 PubMedCrossRefGoogle Scholar
  104. Liu W, May GS, Lionakis MS, Lewis RE, Kontoyiannis DP (2004) Extra copies of the Aspergillus fumigatus squalene epoxidase gene confer resistance to terbinafine: genetic approach to studying gene dose-dependent resistance to antifungals in A. fumigatus. Antimicrob Agents Chemother 48(7):2490–2496. doi: 10.1128/AAC.48.7.2490-2496.2004 PubMedCrossRefGoogle Scholar
  105. Liu HL, De Souza CP, Osmani AH, Osmani SA (2009) The three fungal transmembrane nuclear pore complex proteins of Aspergillus nidulans are dispensable in the presence of an intact An-Nup84-120 complex. Mol Biol Cell 20(2):616–630. doi: 10.1091/mbc.E08-06-0628 PubMedCrossRefGoogle Scholar
  106. Lorang JM, Tuori RP, Martinez JP, Sawyer TL, Redman RS, Rollins JA, Wolpert TJ, Johnson KB, Rodriguez RJ, Dickman MB, Ciuffetti LM (2001) Green fluorescent protein is lighting up fungal biology. Appl Environ Microbiol 67(5):1987–1994. doi: 10.1128/AEM.67.5.1987-1994.2001 PubMedCrossRefGoogle Scholar
  107. Lubertozzi D, Keasling JD (2009) Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 27(1):53–75. doi: 10.1016/j.biotechadv.2008.09.001 PubMedCrossRefGoogle Scholar
  108. Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B, Houterman PM, Kang S, Shim WB, Woloshuk C, Xie X, Xu JR, Antoniw J, Baker SE, Bluhm BH, Breakspear A, Brown DW, Butchko RA, Chapman S, Coulson R, Coutinho PM, Danchin EG, Diener A, Gale LR, Gardiner DM, Goff S, Hammond-Kosack KE, Hilburn K, Hua-Van A, Jonkers W, Kazan K, Kodira CD, Koehrsen M, Kumar L, Lee YH, Li L, Manners JM, Miranda-Saavedra D, Mukherjee M, Park G, Park J, Park SY, Proctor RH, Regev A, Ruiz-Roldan MC, Sain D, Sakthikumar S, Sykes S, Schwartz DC, Turgeon BG, Wapinski I, Yoder O, Young S, Zeng Q, Zhou S, Galagan J, Cuomo CA, Kistler HC, Rep M (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464(7287):367–373. doi: 10.1038/nature08850 PubMedCrossRefGoogle Scholar
  109. Machida M, Yamada O, Gomi K (2008) Genomics of Aspergillus oryzae: learning from the history of Koji mold and exploration of its future. DNA Res 15(4):173–183. doi: 10.1093/dnares/dsn020 PubMedCrossRefGoogle Scholar
  110. Maor R, Puyesky M, Horowitz BA, Sharon A (1998) Use of green fluorescent protein (GFP) for studying development and fungal-plant interaction in Cochliobolus heterostrophus. Mycol Res 102(4):491–496CrossRefGoogle Scholar
  111. Margolin BS, Freitag M, Selker E (1997) Improved plasmids for gene targeting at the his-3 locus of Neurospora crassa by electroporation. Fungal Genet Rep 44:34–36Google Scholar
  112. Mattern IE, Punt PJ, van den Hondel CA (1988) A vector for Aspergillus transformation conferring phleomycin resistance. Fungal Genet Newsl 35:25Google Scholar
  113. McClintock B (1945) Neurospora. I. Preliminary observations of the chromosomes of Neurospora crassa. Am J Bot 32(10):671–678CrossRefGoogle Scholar
  114. McCluskey K, Walker SA, Yedlin RL, Madole D, Plamann M (2007) Complementation of un-16 and the development of a selectable marker for transformation of Neurospora crassa. Fungal Genet Newsl 54:9–11Google Scholar
  115. McCluskey K, Wiest A, Grigoriev IV, Lipzen A, Martin J, Schackwitz W, Baker SE (2011) Rediscovery by whole genome sequencing: classical mutations and genome polymorphisms in Neurospora crassa. G3 Genes Genomes Genet 1(4):303–316. doi: 10.1534/g3.111.000307 Google Scholar
  116. Meyer V (2008) Genetic engineering of filamentous fungi–progress, obstacles and future trends. Biotechnol Adv 26(2):177–185. doi: 10.1016/j.biotechadv.2007.12.001 PubMedCrossRefGoogle Scholar
  117. Meyer V, Arentshorst M, El-Ghezal A, Drews AC, Kooistra R, van den Hondel CA, Ram AF (2007) Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol 128(4):770–775. doi: 10.1016/j.jbiotec.2006.12.021 PubMedCrossRefGoogle Scholar
  118. Mills DI, McCluskey K (1990) Electrophoretic karyotypes of fungi: the new cytology. Mol Plant Microbe Interact 3(6):351–357CrossRefGoogle Scholar
  119. Mishra NC, Tatum EL (1973) Non-Mendelian inheritance of DNA-induced inositol independence in Neurospora. Proc Natl Acad Sci U S A 70(12):3875–3879PubMedCrossRefGoogle Scholar
  120. Morgan LW, Greene AV, Bell-Pedersen D (2003) Circadian and light-induced expression of luciferase in Neurospora crassa. Fungal Genet Biol 38(3):327–332, doi:S1087184502005625PubMedCrossRefGoogle Scholar
  121. Mylyk OM, Threlkeld SF (1974) A genetic study of female sterility in Neurospora crassa. Genet Res 24(1):91–102PubMedCrossRefGoogle Scholar
  122. Nakamura K, Egashira T (1961) Genetically mixed perithecia in Neurospora. Nature 190:1129–1130PubMedCrossRefGoogle Scholar
  123. Nakayashiki H, Hanada S, Nguyen BQ, Kadotani N, Tosa Y, Mayama S (2005) RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet Biol 42(4):275–283. doi: 10.1016/j.fgb.2005.01.002 PubMedCrossRefGoogle Scholar
  124. Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L, Murray SL, Hynes MJ, Osmani SA, Oakley BR (2006) A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172(3):1557–1566. doi: 10.1534/genetics.105.052563 PubMedCrossRefGoogle Scholar
  125. Nguyen QB, Kadotani N, Kasahara S, Tosa Y, Mayama S, Nakayashiki H (2008) Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system. Mol Microbiol 68(6):1348–1365. doi: 10.1111/j.1365-2958.2008.06242.x PubMedCrossRefGoogle Scholar
  126. Niedenthal RK, Riles L, Johnston M, Hegemann JH (1996) Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast 12(8):773–786. doi: 10.1002/(SICI)1097-0061(19960630)12:8<773::AID-YEA972>3.0.CO;2-L PubMedCrossRefGoogle Scholar
  127. O’Gorman CM, Fuller HT, Dyer PS (2008) Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 457(7228):471–474CrossRefGoogle Scholar
  128. Oakley BR, Rinehart JE, Mitchell BL, Oakley CE, Carmona C, Gray GL, May GS (1987a) Cloning, mapping and molecular analysis of the pyrG (orotidine-5′-phosphate decarboxylase) gene of Aspergillus nidulans. Gene 61(3):385–399PubMedCrossRefGoogle Scholar
  129. Oakley CE, Weil CF, Kretz PL, Oakley BR (1987b) Cloning of the riboB locus of Aspergillus nidulans. Gene 53(2–3):293–298PubMedCrossRefGoogle Scholar
  130. OECD (2001) Biological resource centres underpinning the future of life sciences and biotechnology. OECD, ParisGoogle Scholar
  131. Olmedo-Monfil V, Cortes-Penagos C, Herrera-Estrella A (2004) Three decades of fungal transformation: key concepts and applications. Methods Mol Biol 267:297–313. doi: 10.1385/1-59259-774-2:297 PubMedGoogle Scholar
  132. Orbach MJ (1994) A cosmid with a HyR marker for fungal library construction and screening. Gene 150(1):159–162PubMedCrossRefGoogle Scholar
  133. Orbach MJ, Porro EB, Yanofsky C (1986) Cloning and characterization of the gene for beta-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker. Mol Cell Biol 6(7):2452–2461PubMedGoogle Scholar
  134. Osherov N, Mathew J, May GS (2000) Polarity-defective mutants of Aspergillus nidulans. Fungal Genet Biol 31(3):181–188. doi: 10.1006/fgbi.2000.1236 PubMedCrossRefGoogle Scholar
  135. Pall ML, Brunelli JP (1993) A series of six compact fungal transformation vectors containing polylinkers with multiple unique restriction sites. Fungal Genet Newsl 40:59–62Google Scholar
  136. Patel RM, Heneghan MN, van Kan JA, Bailey AM, Foster GD (2008) The pOT and pLOB vector systems: improving ease of transgene expression in Botrytis cinerea. J Gen Appl Microbiol 54(6):367–376, doi:JST.JSTAGE/jgam/54.367PubMedCrossRefGoogle Scholar
  137. Paz Z, Garcia-Pedrajas MD, Andrews DL, Klosterman SJ, Baeza-Montanez L, Gold SE (2011) One step construction of Agrobacterium-Recombination-ready-plasmids (OSCAR), an efficient and robust tool for ATMT based gene deletion construction in fungi. Fungal Genet Biol 48(7):677–684. doi: 10.1016/j.fgb.2011.02.003 PubMedCrossRefGoogle Scholar
  138. Peberdy JF (1979) Fungal protoplasts: isolation, reversion, and fusion. Annu Rev Microbiol 33:21–39. doi: 10.1146/annurev.mi.33.100179.000321 PubMedCrossRefGoogle Scholar
  139. Peberdy JF (1987) Developments in protoplast fusion in fungi. Microbiol Sci 4(4):108–114PubMedGoogle Scholar
  140. Perkins DD (1959) New markers and multiple point linkage data in Neurospora. Genetics 44(6):1185–1208PubMedGoogle Scholar
  141. Perkins DD (1997) Chromosome rearrangements in Neurospora and other filamentous fungi. Adv Genet 36:239–398PubMedCrossRefGoogle Scholar
  142. Perkins DD, Ishitani C (1959) Linkage data for group III markers in Neurospora. Genetics 44(6):1209–1213PubMedGoogle Scholar
  143. Perkins DD, Glassey M, Bloom BA (1962) New data on markers and rearrangements in Neurospora. Can J Genet Cytol 4:187–205Google Scholar
  144. Perkins DD, Kinsey JA, Asch DK, Frederick GD (1993) Chromosome rearrangements recovered following transformation of Neurospora crassa. Genetics 134(3):729–736PubMedGoogle Scholar
  145. Pomraning KR, Smith KM, Freitag M (2011) Bulk segregant analysis followed by high-throughput sequencing reveals the Neurospora cell cycle gene, ndc-1, to be allelic with the gene for ornithine decarboxylase, spe-1. Eukaryot Cell 10:724–733. doi: 10.1128/EC.00016-11 PubMedCrossRefGoogle Scholar
  146. Pontecorvo G (1956) The parasexual cycle in fungi. Annu Rev Microbiol 10:393–400. doi: 10.1146/annurev.mi.10.100156.002141 PubMedCrossRefGoogle Scholar
  147. Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, van den Hondel CA (1987) Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56(1):117–124, doi:0378-1119(87)90164-8PubMedCrossRefGoogle Scholar
  148. Rahman Z, Shida Y, Furukawa T, Suzuki Y, Okada H, Ogasawara W, Morikawa Y (2009) Application of Trichoderma reesei cellulase and xylanase promoters through homologous recombination for enhanced production of extracellular beta-glucosidase I. Biosci Biotechnol Biochem 73(5):1083–1089PubMedCrossRefGoogle Scholar
  149. Raper JR (1939) role of hormones in the sexual reaction of heterothallic achlyas. Science 89(2310):321–322. doi: 10.1126/science.89.2310.321 PubMedCrossRefGoogle Scholar
  150. Rischitor PE, Konzack S, Fischer R (2004) The Kip3-like kinesin KipB moves along microtubules and determines spindle position during synchronized mitoses in Aspergillus nidulans hyphae. Eukaryot Cell 3(3):632–645. doi: 10.1128/EC.3.3.632-645.2004 PubMedCrossRefGoogle Scholar
  151. Rollo F, Sassaroli S, Ubaldi M (1995) Molecular phylogeny of the fungi of the Iceman’s grass clothing. Curr Genet 28(3):289–297PubMedCrossRefGoogle Scholar
  152. Sang H, Whitehouse HL (1983) Genetic recombination at the buff spore color locus in SORDARIA BREVICOLLIS. II. Analysis of flanking marker behavior in crosses between buff mutants. Genetics 103(2):161–178PubMedGoogle Scholar
  153. Selitrennikoff CP (1979) Chitin synthase activity from the slime variant of Neurospora crassa. Biochim Biophys Acta 571(2):224–232PubMedCrossRefGoogle Scholar
  154. Selker EU (1997) Epigenetic phenomena in filamentous fungi: useful paradigms or repeat-induced confusion? Trends Genet 13(8):296–301, doi:S0168-9525(97)01201-8PubMedCrossRefGoogle Scholar
  155. Sermonti G (1959) Genetics of penicillin production. Ann N Y Acad Sci 81:950–973PubMedCrossRefGoogle Scholar
  156. Shear CL, Dodge BO (1927) Life Histories and heterothallism of the red bread-mold fungi of the Monilia sitophila group. J Agric Res 34(11):1019–1042Google Scholar
  157. Silar P (1995) Two new easy to use vectors for transformations. Fungal Genet Newsl 42:73Google Scholar
  158. Soderlund C, Haller K, Pampanwar V, Ebbole D, Farman M, Orbach MJ, Wang GL, Wing R, Xu JR, Brown D, Mitchell T, Dean R (2006) MGOS: a resource for studying Magnaporthe grisea and Oryza sativa interactions. Mol Plant Microbe Interact 19(10):1055–1061. doi: 10.1094/MPMI-19-1055 PubMedCrossRefGoogle Scholar
  159. Spellig T, Bottin A, Kahmann R (1996) Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis. Mol Gen Genet 252(5):503–509PubMedGoogle Scholar
  160. Springer ML, Yanofsky C (1989) A morphological and genetic analysis of conidiophore development in Neurospora crassa. Genes Dev 3(4):559–571PubMedCrossRefGoogle Scholar
  161. Staben C, Jensen BC, Singer M, Pollock J, Schectman M, Kinsey JA, Selker E (1989) Use of a bacterial hygromycin B resistance gene as a dominant selectable marker in Neurospora crassa transformation. Fungal Genet Newsl 36:79–81Google Scholar
  162. Storms R, Zheng Y, Li H, Sillaots S, Martinez-Perez A, Tsang A (2005) Plasmid vectors for protein production, gene expression and molecular manipulations in Aspergillus niger. Plasmid 53(3):191–204. doi: 10.1016/j.plasmid.2004.10.001 PubMedCrossRefGoogle Scholar
  163. Suelmann R, Fischer R (2000) Mitochondrial movement and morphology depend on an intact actin cytoskeleton in Aspergillus nidulans. Cell Motil Cytoskeleton 45(1):42–50. doi: 10.1002/(SICI)1097-0169(200001)45:1<42::AID-CM4>3.0.CO;2-C PubMedCrossRefGoogle Scholar
  164. Sweigard J, Chumley FG, Carroll A, Farrall L, Valent B (1997) A series of vectors for fungal transformation. Fungal Genet Newsl 44:52–53Google Scholar
  165. Szewczyk E, Krappmann S (2010) Conserved regulators of mating are essential for Aspergillus fumigatus cleistothecium formation. Eukaryot Cell 9(5):774–783. doi: 10.1128/EC.00375-09 PubMedCrossRefGoogle Scholar
  166. Takamine J (1914) Enzymes of Aspergillus oryzae and the application of its amyloclastic enzyme to the fermentation industry. Ind Eng Chem 6(10):824–828. doi: 10.1021/ie50070a015 CrossRefGoogle Scholar
  167. Tan ST, Ho CC (1970) A gene controlling the early development of protoperithecium in Neurospora crassa. Mol Gen Genet 107:158–161CrossRefGoogle Scholar
  168. Tatum EL, Perkins DD (1950) Genetics of microorganisms. Annu Rev Microbiol 4:129–150. doi: 10.1146/annurev.mi.04.100150.001021 PubMedCrossRefGoogle Scholar
  169. Taylor JL, Borgmann IE (1996) A deluxe cosmid vector for transformation of filamentous fungi. Fungal Genet Newsl 43:52–53Google Scholar
  170. Tilburn J, Scazzocchio C, Taylor GG, Zabicky-Zissman JH, Lockington RA, Davies RW (1983) Transformation by integration in Aspergillus nidulans. Gene 26(2–3):205–221PubMedCrossRefGoogle Scholar
  171. Toews MW, Warmbold J, Konzack S, Rischitor P, Veith D, Vienken K, Vinuesa C, Wei H, Fischer R (2004) Establishment of mRFP1 as a fluorescent marker in Aspergillus nidulans and construction of expression vectors for high-throughput protein tagging using recombination in vitro (GATEWAY). Curr Genet 45(6):383–389. doi: 10.1007/s00294-004-0495-7 PubMedCrossRefGoogle Scholar
  172. Tucker SL, Orbach MJ (2007) Agrobacterium-mediated transformation to create an insertion library in Magnaporthe grisea. Methods Mol Biol 354:57–68. doi: 10.1385/1-59259-966-4:57 PubMedGoogle Scholar
  173. Turgeon BG, Garber RC, Yoder OC (1985) Transformation of the fungal maize pathogen Cochliobolus heterostrophus using the Aspergillus nidulans amdS gene. Mol Gen Genet 201(3):450–453CrossRefGoogle Scholar
  174. Turgeon BG, Condon B, Liu J, Zhang N (2010) Protoplast transformation of filamentous fungi. Methods Mol Biol 638:3–19. doi: 10.1007/978-1-60761-611-5_1 PubMedCrossRefGoogle Scholar
  175. Turner BC, Perkins DD (1979) Spore killer, a chromosomal factor in neurospora that kills meiotic products not containing it. Genetics 93(3):587–606PubMedGoogle Scholar
  176. Villalba F, Collemare J, Landraud P, Lambou K, Brozek V, Cirer B, Morin D, Bruel C, Beffa R, Lebrun MH (2008) Improved gene targeting in Magnaporthe grisea by inactivation of MgKU80 required for non-homologous end joining. Fungal Genet Biol 45(1):68–75. doi: 10.1016/j.fgb.2007.06.006 PubMedCrossRefGoogle Scholar
  177. Vogt K, Bhabhra R, Rhodes JC, Askew DS (2005) Doxycycline-regulated gene expression in the opportunistic fungal pathogen Aspergillus fumigatus. BMC Microbiol 5:1. doi: 10.1186/1471-2180-5-1 PubMedCrossRefGoogle Scholar
  178. Wang TY, He F, Hu QW, Zhang Z (2011) A predicted protein-protein interaction network of the filamentous fungus Neurospora crassa. Mol Biosyst 7(7):2278–2285. doi: 10.1039/c1mb05028a PubMedCrossRefGoogle Scholar
  179. Weaver JC (1995) Electroporation theory. Concepts and mechanisms. Methods Mol Biol 55:3–28. doi: 10.1385/0-89603-328-7:3 PubMedGoogle Scholar
  180. Weijer J, Vigfusson NV (1972) Sexuality in Neurospora crassa. I. Mutations to male sterility. Genet Res 19(3):191–204PubMedCrossRefGoogle Scholar
  181. Wernars K, Goosen T, Wennekes LM, Visser J, Bos CJ, van den Broek HW, van Gorcom RF, van den Hondel CA, Pouwels PH (1985) Gene amplification in Aspergillus nidulans by transformation with vectors containing the amdS gene. Curr Genet 9(5):361–368PubMedCrossRefGoogle Scholar
  182. Wiest A, McCarthy AJ, Schnittker R, McCluskey K (2012a) Molecular analysis of mutants of the Neurospora adenylosuccinate synthetase locus. J Genet 91(2):199–204PubMedCrossRefGoogle Scholar
  183. Wiest A, Schnittker R, Plamann M, McCluskey K (2012b) Best practices for fungal germplasm repositories and perspectives on their implementation. Appl Microbiol Biotechnol 93(3):975–982. doi: 10.1007/s00253-011-3786-1 PubMedCrossRefGoogle Scholar
  184. Wiest AE, Baker SE, McCluskey K (2012c) Neurospora gene and genome analysis: past through future. In: Kasbekar DP, McCluskey K (eds) Neurospora: genomics and molecular biology. Caister Academic, Norfolk, pp 273–291Google Scholar
  185. Windhofer F, Catcheside DE, Kempken F (2000) Methylation of the foreign transposon Restless in vegetative mycelia of Neurospora crassa. Curr Genet 37(3):194–199PubMedCrossRefGoogle Scholar
  186. Woodward VW, De Zeeuw JR, Srb AM (1954) The separation and isolation of particular biochemical mutants of neurospora by differential germination of conidia, followed by filtration and selective plating. Proc Natl Acad Sci U S A 40(3):192–200PubMedCrossRefGoogle Scholar
  187. Yang L, Ukil L, Osmani A, Nahm F, Davies J, De Souza CP, Dou X, Perez-Balaguer A, Osmani SA (2004) Rapid production of gene replacement constructs and generation of a green fluorescent protein-tagged centromeric marker in Aspergillus nidulans. Eukaryot Cell 3(5):1359–1362. doi: 10.1128/EC.3.5.1359-1362.2004 PubMedCrossRefGoogle Scholar
  188. Yeadon J, Petersen A, Catcheside DEA (1998) DNA sequence of histidine-3 from two Neurospora wild-types. Fungal Genet Newsl 45:44Google Scholar
  189. Yelton MM, Hamer JE, Timberlake WE (1984) Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci U S A 81(5):1470–1474PubMedCrossRefGoogle Scholar
  190. Zeilinger S, Galhaup C, Payer K, Woo SL, Mach RL, Fekete C, Lorito M, Kubicek CP (1999) Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host. Fungal Genet Biol 26(2):131–140. doi: 10.1006/fgbi.1998.1111 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Fungal Genetics Stock CenterUniversity of MissouriKansas CityUSA

Personalised recommendations