Recent Advances on the Genomics of Litter- and Soil-Inhabiting Agaricomycetes

  • Phil Kersten
  • Dan CullenEmail author
Part of the Soil Biology book series (SOILBIOL, volume 36)


Fungi, particularly the Agaricomycetes, play a pivotal role cycling nutrients in forest soils. Although these filamentous fungi are clearly responsible for lignocellulose decomposition, the underlying mechanisms remain uncertain. This article reviews current understanding of Agaricomycete physiology as it relates to lignocellulose conversions. Fresh insights into the mechanisms of plant cell wall degradation have been made possible by recently available genome sequences. For efficient lignin degradation, the repertoire of genes and expression analyses support an important role for high oxidation potential peroxidases working in conjunction with peroxide-generating oxidases. Generally associated with dead wood, some of these “white rot” fungi are also tree pathogens and litter-inhabiting saprophytes. In contrast, certain wood-decay fungi are unable to remove lignin but have adapted to rapidly depolymerize cellulose. Such decay patterns are typically classified as brown rot, and evidence suggests the involvement of small molecular oxidants such as hydroxyl radical. Uncertainty remains in part due to the dearth of experimental tools, but progress in transcriptomics, proteomics, and genetic transformation offers opportunities for rapid advances.


Sulfonated Lignin Veratryl Alcohol Versatile Peroxidase Methanol Oxidase Extracellular Peroxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albrecht M, Lengauer T (2003) Pyranose oxidase identified as a member of the GMC oxidoreductase family. Bioinformatics 19:1216–1220PubMedCrossRefGoogle Scholar
  2. Anh DH, Ullrich R, Benndorf D et al (2007) The coprophilous mushroom Coprinus radians secretes a haloperoxidase that catalyzes aromatic peroxygenation. Appl Environ Microbiol 73:5477–5485PubMedCrossRefGoogle Scholar
  3. Aranda E, Kinne M, Kluge M et al (2009) Conversion of dibenzothiophene by the mushrooms Agrocybe aegerita and Coprinellus radians and their extracellular peroxygenases. Appl Microbiol Biotechnol 82:1057–1066PubMedCrossRefGoogle Scholar
  4. Arantes V, Milagres AM, Filley TR, Goodell B (2011) Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions. J Ind Microbiol Biotechnol 38:541–555PubMedCrossRefGoogle Scholar
  5. Arantes V, Jellison J, Goodell B (2012) Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl Microbiol Biotechnol 94:323–338PubMedCrossRefGoogle Scholar
  6. Bailly J, Fraissinet-Tachet L, Verner MC et al (2007) Soil eukaryotic functional diversity, a metatranscriptomic approach. ISME J 1:632–642PubMedCrossRefGoogle Scholar
  7. Baldrian P (2009) Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs? Oecologia 161:657–660PubMedCrossRefGoogle Scholar
  8. Baldrian P, Valaskova V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521PubMedCrossRefGoogle Scholar
  9. Baldrian P, Vetrovsky T (2012) Scaling down the analysis of environmental processes: monitoring enzyme activity in natural substrates on a millimeter resolution scale. Appl Environ Microbiol 78:3473–3475PubMedCrossRefGoogle Scholar
  10. Baldrian P, Kolarik M, Stursova M et al (2012) Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 6:248–258PubMedCrossRefGoogle Scholar
  11. Baute M-A, Baute R (1984) Occurrence among macrofungi of the bioconversion of glucosone to cortalcerone. Phytochemistry 23:271–274CrossRefGoogle Scholar
  12. Bengtson P, Bastviken D, De Boer W, Öberg G (2009) Possible role of reactive chlorine in microbial antagonism and organic matter chlorination in terrestrial environments. Environ Microbiol 11:1330–1339PubMedCrossRefGoogle Scholar
  13. Bertrand T, Jolivalt C, Briozzo P et al (2002) Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry 41:7325–7333PubMedCrossRefGoogle Scholar
  14. Blanchette R (1991) Delignification by wood-decay fungi. Ann Rev Phytopathol 29:381–398CrossRefGoogle Scholar
  15. Blanchette RA, Burnes TA, Eerdmans MM, Akhtar M (1992) Evaluating isolates of Phanerochaete chrysosporium and Ceriporiopsis subvermispora for use in biological pulping processes. Holzforschung 46:109–115CrossRefGoogle Scholar
  16. Blanchette R, Krueger E, Haight J et al (1997) Cell wall alterations in loblolly pine wood decayed by the white-rot fungus, Ceriporiopsis subvermispora. J Biotechnol 53:203–213CrossRefGoogle Scholar
  17. Boddy L, Watkinson SC (1995) Wood decomposition, higher fungi, and their role in nutrient redistribution. Can J Bot 73:S1377–S1883CrossRefGoogle Scholar
  18. Bogan B, Schoenike B, Lamar R, Cullen D (1996a) Manganese peroxidase mRNA and enzyme activity levels during bioremediation of polycyclic aromatic hydrocarbon-contaminated soil with Phanerochaete chrysosporium. Appl Environ Microbiol 62:2381–2386PubMedGoogle Scholar
  19. Bogan B, Schoenike B, Lamar R, Cullen D (1996b) Expression of lip genes during growth in soil and oxidation of anthracene by Phanerochaete chrysosporium. Appl Environ Microbiol 62:3697–3703PubMedGoogle Scholar
  20. Bourbonnais R, Paice MG, Freiermuth B et al (1997) Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Appl Environ Microbiol 63:4627–4632PubMedGoogle Scholar
  21. Boyle CD, Kropp BR, Reid ID (1992) Solubilization and mineralization of lignin by white rot fungi. Appl Environ Microbiol 58:3217–3224PubMedGoogle Scholar
  22. Brown ME, Barros T, Chang MCY (2012) Identification and characterization of a multifunctional dye peroxidase from a lignin-reactive bacterium. ACS Chem Biol 7:2074–2081PubMedCrossRefGoogle Scholar
  23. Buee M, Reich M, Murat C et al (2009) 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456PubMedCrossRefGoogle Scholar
  24. Casella L, Gullotti M, Selvaggini C et al (1994) The chloroperoxidase-catalyzed oxidation of phenols. Mechanism, selectivity, and characterization of enzyme-substrate complexes. Biochemistry 33:6377–6386PubMedCrossRefGoogle Scholar
  25. Castanera R, Perez G, Omarini A et al (2012) Transcriptional and enzymatic profiling of Pleurotus ostreatus laccase genes in submerged and solid-state fermentation cultures. Appl Environ Microbiol 78:4037–4045PubMedCrossRefGoogle Scholar
  26. Cavener DR (1992) GMC oxidoreductases: a newly defined family of homologous proteins with diverse catalytic activities. J Mol Biol 223:811–814PubMedCrossRefGoogle Scholar
  27. Choinowski T, Blodig W, Winterhalter KH, Piontek K (1999) The crystal structure of lignin peroxidase at 1.70 A resolution reveals a hydroxy group on the cbeta of tryptophan 171: a novel radical site formed during the redox cycle. J Mol Biol 286:809–827PubMedCrossRefGoogle Scholar
  28. Cohen R, Jensen KA, Houtman CJ, Hammel KE (2002) Significant levels of extracellular reactive oxygen species produced by brown rot basidiomycetes on cellulose. FEBS Lett 531:483–488PubMedCrossRefGoogle Scholar
  29. Cohen R, Suzuki MR, Hammel KE (2004) Differential stress-induced regulation of two quinone reductases in the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 70:324–331PubMedCrossRefGoogle Scholar
  30. Cowling EB (1961) Comparative biochemistry of the decay of sweetgum sapwood by white-rot and brown-rot fungi. Technical Bulletin No. 1258, U.S. Department of Agriculture, Washington, DCGoogle Scholar
  31. Cullen D, Kersten PJ (2004) Enzymology and molecular biology of lignin degradation. In: Brambl R, Marzulf GA (eds) The mycota III biochemistry and molecular biology. Springer, Berlin, pp 249–273CrossRefGoogle Scholar
  32. Cullings K, Courty PE (2009) Saprotrophic capabilities as functional traits to study functional diversity and resilience of ectomycorrhizal community. Oecologia 161:661–664PubMedCrossRefGoogle Scholar
  33. Damon C, Vallon L, Zimmermann S et al (2011) A novel fungal family of oligopeptide transporters identified by functional metatranscriptomics of soil eukaryotes. ISME J 5:1871–1880PubMedCrossRefGoogle Scholar
  34. Damon C, Lehembre F, Oger-Desfeux C et al (2012) Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils. PLoS One 7:e28967PubMedCrossRefGoogle Scholar
  35. Daniel G (1994) Use of electron microscopy for aiding our understanding of wood biodegradation. FEMS Microbiol Rev 13:199–233CrossRefGoogle Scholar
  36. Daniel G, Volc J, Kubatova E (1994) Pyranose oxidase, a major source of H2O2 during wood degradation by Phanerochaete chrysosporium, Trametes versicolor, and Oudemansiella mucida. Appl Environ Microbiol 60:2524–2532PubMedGoogle Scholar
  37. Daniel G, Volc J, Filonova L et al (2007) Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H2O2 in brown rot decay of wood. Appl Environ Microbiol 73:6241–6253PubMedCrossRefGoogle Scholar
  38. de Jong E, Cazemier AE, Field JA, de Bont JAM (1994) Physiological role of chlorinated aryl alcohols biosynthesized de novo by the white rot fungus Bjerkandera sp. Strain BOS55. Appl Environ Microbiol 60:271–277PubMedGoogle Scholar
  39. de Jong JF, Ohm RA, de Bekker C et al (2010) Inactivation of ku80 in the mushroom-forming fungus Schizophyllum commune increases the relative incidence of homologous recombination. FEMS Microbiol Lett 310:91–95PubMedCrossRefGoogle Scholar
  40. de Koker TH, Mozuch MD, Cullen D et al (2004) Isolation and purification of pyranose 2-oxidase from Phanerochaete chrysosporium and characterization of gene structure and regulation. Appl Environ Microbiol 70:5794–5800PubMedCrossRefGoogle Scholar
  41. de Menezes A, Clipson N, Doyle E (2012) Comparative metatranscriptomics reveals widespread community responses during phenanthrene degradation in soil. Environ Microbiol 14:2577–2588PubMedCrossRefGoogle Scholar
  42. Dietrich D, Crooks C (2009) Gene cloning and heterologous expression of pyranose 2-oxidase from the brown-rot fungus, Gloeophyllum trabeum. Biotechnol Lett 31:1223–1228PubMedCrossRefGoogle Scholar
  43. Doyle WA, Blodig W, Veitch NC et al (1998) Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Biochemistry 37:15097–15105PubMedCrossRefGoogle Scholar
  44. Durrant AJ, Wood DA, Cain RB (1991) Lignocellulose biodegradation by Agaricus bisporus during solid substrate fermentation. J Gen Microbiol 137:751–755CrossRefGoogle Scholar
  45. Eastwood DC, Floudas D, Binder M et al (2011) The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science 333:762–765PubMedCrossRefGoogle Scholar
  46. Eriksson K-EL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, BerlinCrossRefGoogle Scholar
  47. Faison BD, Kirk TK (1983) Relationship between lignin degradation and production of reduced oxygen species by Phanerochaete chrysosporium. Appl Environ Microbiol 46:1140–1145PubMedGoogle Scholar
  48. Fernandez IS, Ruiz-Duenas FJ, Santillana E et al (2009) Novel structural features in the GMC family of oxidoreductases revealed by the crystal structure of fungal aryl-alcohol oxidase. Acta Crystallogr D Biol Crystallogr 65:1196–1205PubMedCrossRefGoogle Scholar
  49. Fernandez-Fueyo E, Ruiz-Duenas FJ, Ferreira P et al (2012) Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Natl Acad Sci U S A 109:5458–5463PubMedCrossRefGoogle Scholar
  50. Fleischmann A, Darsow M, Degtyarenko K et al (2004) IntEnz, the integrated relational enzyme database. Nucleic Acids Res 32:D434–D437PubMedCrossRefGoogle Scholar
  51. Floudas D, Binder M, Riley R et al (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719PubMedCrossRefGoogle Scholar
  52. Flournoy D, Paul J, Kirk TK, Highley T (1993) Changes in the size and volume of pore in sweet gum wood during simultaneous rot by Phanerochaete chrysosporium. Holzforschung 47:297–301CrossRefGoogle Scholar
  53. Forney LJ, Reddy CA, Pankratz HS (1982) Ultrastructural localization of hydrogen peroxide production in ligninolytic Phanerochaete chrysosporium cells. Appl Environ Microbiol 44:732–736PubMedGoogle Scholar
  54. Giffhorn F (2000) Fungal pyranose oxidases: occurrence, properties and biotechnical applications in carbohydrate chemistry. Appl Microbiol Biotechnol 54:727–740PubMedCrossRefGoogle Scholar
  55. Gilbertson RL (1981) North American wood-rotting fungi that cause brown rots. Mycotaxon 12:372–416Google Scholar
  56. Gomez-Toribio V, Garcia-Martin AB, Martinez MJ et al (2009) Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling. Appl Environ Microbiol 75:3944–3953PubMedCrossRefGoogle Scholar
  57. Goodell B (2003) Brown rot fungal degradation of wood: our evolving view. In: Goodell B et al (eds) Wood deterioration and preservation. American Chemical Society, Washington, DC, pp 97–118CrossRefGoogle Scholar
  58. Grinhut T, Salame TM, Chen Y, Hadar Y (2011a) Involvement of ligninolytic enzymes and Fenton-like reaction in humic acid degradation by Trametes sp. Appl Microbiol Biotechnol 91:1131–1140PubMedCrossRefGoogle Scholar
  59. Grinhut T, Hertkorn N, Schmitt-Kopplin P et al (2011b) Mechanisms of humic acids degradation by white rot fungi explored using 1H NMR spectroscopy and FTICR mass spectrometry. Environ Sci Technol 45:2748–2754PubMedCrossRefGoogle Scholar
  60. Gröbe G, Ullrich R, Pecyna M et al (2011) High-yield production of aromatic peroxygenase by the agaric fungus Marasmius rotula. AMB Express 1:1–11CrossRefGoogle Scholar
  61. Gutiérrez A, Caramelo L, Prieto A et al (1994) Anisaldehyde production and aryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi of the genus Pleurotus. Appl Environ Microbiol 60:1783–1788PubMedGoogle Scholar
  62. Hallberg BM, Bergfors T, Backbro K et al (2000) A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase. Structure 8:79–88PubMedCrossRefGoogle Scholar
  63. Hallberg BM, Leitner C, Haltrich D, Divne C (2004) Crystal structure of the 270 kDa homotetrameric lignin-degrading enzyme pyranose 2-oxidase. J Mol Biol 341:781–796PubMedCrossRefGoogle Scholar
  64. Harris PV, Welner D, McFarland KC et al (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316PubMedCrossRefGoogle Scholar
  65. Hatakka A (2001) Biodegradation of lignin. In: Hofrichter M, Steinbuchel A (eds) Lignin, humic substances and coal. Wiley-VCH, Weingeim, pp 129–180Google Scholar
  66. Hatakka A, Hammel KE (2010) Fungal biodegradation of lignocelluloses. In: Hofrichter M (ed) Industrial applications. Springer, BerlinGoogle Scholar
  67. Henriksson G, Johansson G, Pettersson G (2000a) A critical review of cellobiose dehydrogenases. J Biotechnol 78:93–113PubMedCrossRefGoogle Scholar
  68. Henriksson G, Zhang L, Li J et al (2000b) Is cellobiose dehydrogenase from Phanerochaete chrysosporium a lignin degrading enzyme? Biochim Biophys Acta 1480:83–91PubMedCrossRefGoogle Scholar
  69. Hernández-Ortega A, Ferreira P, Martínez A (2012) Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation. Appl Microbiol Biotechnol 93:1395–1410PubMedCrossRefGoogle Scholar
  70. Hettich RL, Sharma R, Chourey K, Giannone RJ (2012) Microbial metaproteomics: identifying the repertoire of proteins that microorganisms use to compete and cooperate in complex environmental communities. Curr Opin Microbiol 15:373–380PubMedCrossRefGoogle Scholar
  71. Higuchi T (1990) Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol 24:23–63CrossRefGoogle Scholar
  72. Hofrichter M, Ullrich R, Pecyna M et al (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87:871–897PubMedCrossRefGoogle Scholar
  73. Janse BJH, Gaskell J, Akhtar M, Cullen D (1998) Expression of Phanerochaete chrysosporium genes encoding lignin peroxidases, manganese peroxidases, and glyoxal oxidase in wood. Appl Environ Microbiol 64:3536–3538PubMedGoogle Scholar
  74. Kapich AN, Jensen KA, Hammel KE (1999) Peroxyl radicals are potential agents of lignin biodegradation. FEBS Lett 461:115–119PubMedCrossRefGoogle Scholar
  75. Keiblinger KM, Wilhartitz IC, Schneider T et al (2012) Soil metaproteomics – comparative evaluation of protein extraction protocols. Soil Biol Biochem 54:14–24PubMedCrossRefGoogle Scholar
  76. Kellner H, Luis P, Buscot F (2007) Diversity of laccase-like multicopper oxidase genes in Morchellaceae: identification of genes potentially involved in extracellular activities related to plant litter decay. FEMS Microbiol Ecol 61:153–163PubMedCrossRefGoogle Scholar
  77. Kellner H, Zak DR, Vandenbol M (2010) Fungi unearthed: transcripts encoding lignocellulolytic and chitinolytic enzymes in forest soil. PLoS One 5:e10971PubMedCrossRefGoogle Scholar
  78. Kellner H, Luis P, Portetelle D, Vandenbol M (2011) Screening of a soil metatranscriptomic library by functional complementation of Saccharomyces cerevisiae mutants. Microbiol Res 166:360–368PubMedCrossRefGoogle Scholar
  79. Kersten PJ (1990) Glyoxal oxidase of Phanerochaete chrysosporium; its characterization and activation by lignin peroxidase. Proc Natl Acad Sci U S A 87:2936–2940PubMedCrossRefGoogle Scholar
  80. Kersten PJ, Cullen D (1993) Cloning and characterization of a cDNA encoding glyoxal oxidase, a H2O2-producing enzyme from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Proc Natl Acad Sci U S A 90:7411–7413PubMedCrossRefGoogle Scholar
  81. Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44:77–87PubMedCrossRefGoogle Scholar
  82. Kersten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol 169:2195–2201PubMedGoogle Scholar
  83. Kersten PJ, Tien M, Kalyanaraman B, Kirk TK (1985) The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J Biol Chem 260:2609–2612PubMedGoogle Scholar
  84. Kersten PJ, Kalyanaraman B, Hammel KE et al (1990) Comparison of lignin peroxidase, horseradish peroxidase, and laccase in the oxidation of methoxybenzenes. Biochem J 268:475–480PubMedGoogle Scholar
  85. Keyser P, Kirk TK, Zeikus JG (1978) Ligninolytic enzyme system of Phanerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. J Bacteriol 135:790–797PubMedGoogle Scholar
  86. Kim SJ, Shoda M (1999) Purification and characterization of a novel peroxidase from Geotrichum candidum Dec 1 involved in decolorization of dyes. Appl Environ Microbiol 65:1029–1035PubMedGoogle Scholar
  87. Kim SJ, Ishikawa K, Hirai M, Shoda M (1995) Characteristics of a newly isolated fungus, Geotrichum candidum Dec 1, which decolorizes various dyes. J Ferment Bioeng 79:601–607CrossRefGoogle Scholar
  88. Kirk TK, Tien M, Kersten PJ et al (1986) Ligninase of Phanerochaete chrysosporium. Mechanism of its degradation of the non-phenolic arylglycerol beta-aryl ether substructure of lignin. Biochem J 236:279–287PubMedGoogle Scholar
  89. Kirk TK, Ibach R, Mozuch MD et al (1991) Characteristics of cotton cellulose depolymerized by a brown-rot fungus, by acid, or by chemical oxidants. Holzforschung 45:239–244CrossRefGoogle Scholar
  90. Kleman-Leyer K, Agosin E, Conner AH, Kirk TK (1992) Changes in molecular size distribution of cellulose during attack by white rot and brown rot fungi. Appl Environ Microbiol 58:1266–1270PubMedGoogle Scholar
  91. Kluczek-Turpeinen B, Steffen KT, Tuomela M et al (2005) Modification of humic acids by the compost-dwelling deuteromycete Paecilomyces inflatus. Appl Microbiol Biotechnol 66:443–449PubMedCrossRefGoogle Scholar
  92. Koths K, Halenbeck R, Moreland M (1992) Synthesis of the antibiotic cortalcerone from -glucose using pyranose 2-oxidase and a novel fungal enzyme, aldos-2-ulose dehydratase. Carbohydr Res 232:59–75PubMedCrossRefGoogle Scholar
  93. Kuan IC, Tien M (1993) Stimulation of Mn peroxidase activity: a possible role for oxalate in lignin biodegradation. Proc Natl Acad Sci U S A 90:1242–1246PubMedCrossRefGoogle Scholar
  94. Kunishima N, Fukuyama K, Matsubara H et al (1994) Crystal structure of the fungal peroxidase from Arthromyces ramosus at 1·9 Å resolution: structural comparisons with the lignin and cytochrome c peroxidases. J Mol Biol 235:331–344PubMedCrossRefGoogle Scholar
  95. Langston JA, Shaghasi T, Abbate E et al (2011) Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 77:7007–7015PubMedCrossRefGoogle Scholar
  96. Larrondo L, Gonzalez A, Perez_Acle T et al (2005) The nop gene from Phanerochaete chrysosporium encodes a peroxidase with novel structural features. Biophys Chem 116:167–173PubMedCrossRefGoogle Scholar
  97. Liers C, Pecyna MJ, Kellner H et al (2013) Substrate oxidation by dye-decolorizing peroxidases (DyPs) from wood- and litter-degrading agaricomycetes compared to other fungal and plant heme-peroxidases. Appl Microbiol Biotechnol 97(13):5839–5849PubMedCrossRefGoogle Scholar
  98. Longoria A, Tinoco R, Vázquez-Duhalt R (2008) Chloroperoxidase-mediated transformation of highly halogenated monoaromatic compounds. Chemosphere 72:485–490PubMedCrossRefGoogle Scholar
  99. Luis P, Kellner H, Zimdars B et al (2005) Patchiness and spatial distribution of laccase genes of ectomycorrhizal, saprotrophic, and unknown basidiomycetes in the upper horizons of a mixed forest cambisol. Microb Ecol 50:570–579PubMedCrossRefGoogle Scholar
  100. Lundell TK, Mäkelä MR, Hildén K (2010) Lignin-modifying enzymes in filamentous basidiomycetes – ecological, functional and phylogenetic review. J Basic Microbiol 50:5–20PubMedCrossRefGoogle Scholar
  101. Manoj KM, Hager LP (2008) Chloroperoxidase, a janus enzyme. Biochemistry 47:2997–3003PubMedCrossRefGoogle Scholar
  102. Martin F, Aerts A, Ahren D et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92PubMedCrossRefGoogle Scholar
  103. Martinez D, Larrondo LF, Putnam N et al (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700PubMedCrossRefGoogle Scholar
  104. Martinez D, Challacombe J, Morgenstern I et al (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci U S A 106:1954–1959PubMedCrossRefGoogle Scholar
  105. Martinez AT, Rencoret J, Nieto L et al (2011) Selective lignin and polysaccharide removal in natural fungal decay of wood as evidenced by in situ structural analyses. Environ Microbiol 13:96–107PubMedCrossRefGoogle Scholar
  106. Marzullo L, Cannio R, Giardina P et al (1995) Veratryl alcohol oxidase from Pleurotus ostreatus participates in lignin biodegradation and prevents polymerization of laccase-oxidized substrates. J Biol Chem 270:3823–3827PubMedCrossRefGoogle Scholar
  107. Miki K, Renganathan V, Gold MH (1986) Mechanism of beta-aryl ether dimeric lignin model compound oxidation by lignin peroxidase by Phanerochaete chrysosporium. Biochemistry 25:4790–4796CrossRefGoogle Scholar
  108. Morin E, Kohler A, Baker AR et al (2012) Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche. Proc Natl Acad Sci U S A 109:17501–17506PubMedCrossRefGoogle Scholar
  109. Morris DR, Hager LP (1966) Chloroperoxidase: I. Isolation and properties of the crystalline glycoprotein. J Biol Chem 241:1763–1768PubMedGoogle Scholar
  110. Murali Manoj K (2006) Chlorinations catalyzed by chloroperoxidase occur via diffusible intermediate(s) and the reaction components play multiple roles in the overall process. Biochim Biophys Acta 1764:1325–1339PubMedCrossRefGoogle Scholar
  111. Nakazawa T, Ando Y, Kitaaki K et al (2011) Efficient gene targeting in DeltaCc.ku70 or DeltaCc.lig4 mutants of the agaricomycete Coprinopsis cinerea. Fungal Genet Biol 48:939–946PubMedCrossRefGoogle Scholar
  112. Niemenmaa O, Uusi-Rauva A, Hatakka A (2007) Demethoxylation of [O(14)CH (3)]-labelled lignin model compounds by the brown-rot fungi Gloeophyllum trabeum and Poria (Postia) placenta. Biodegradation 19:555–565PubMedCrossRefGoogle Scholar
  113. Nishida A, Eriksson K-E (1987) Formation, purification, and partial characterization of methanol oxidase, a H2O2-producing enzyme in Phanerochaete chrysosporium. Biotechnol Appl Biochem 9:325–338Google Scholar
  114. Ohm RA, de Jong JF, Lugones LG et al (2010) Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol 28:957–963PubMedCrossRefGoogle Scholar
  115. Olson A, Aerts A, Asiegbu F et al (2012) Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen. New Phytol 194:1001–1013PubMedCrossRefGoogle Scholar
  116. Ortiz-Bermúdez P, Hirth KC, Srebotnik E, Hammel KE (2007) Chlorination of lignin by ubiquitous fungi has a likely role in global organochlorine production. Proc Natl Acad Sci U S A 104:3895–3900PubMedCrossRefGoogle Scholar
  117. Osborne RL, Coggins MK, Terner J, Dawson JH (2007) Caldariomyces fumago chloroperoxidase catalyzes the oxidative dehalogenation of chlorophenols by a mechanism involving two one-electron steps. J Am Chem Soc 129:14838–14839PubMedCrossRefGoogle Scholar
  118. Paszczynski A, Crawford R, Funk D, Goodell B (1999) De novo synthesis of 4,5-dimethoxycatechol and 2,5- dimethoxyhydroquinone by the brown rot fungus Gloeophyllum trabeum. Appl Environ Microbiol 65:674–679PubMedGoogle Scholar
  119. Petersen JFW, Kadziola A, Larsen S (1994) Three-dimensional structure of a recombinant peroxidase from Coprinus cinereus at 2.6 Å resolution. FEBS Lett 339:291–296PubMedCrossRefGoogle Scholar
  120. Pisanelli I, Kujawa M, Spadiut O et al (2009) Pyranose oxidase from Phanerochaete chrysosporium – expression in E. coli and biochemical characterisation. J Biotechnol 142:97–106PubMedCrossRefGoogle Scholar
  121. Quinlan RJ, Sweeney MD, Lo Leggio L et al (2011) Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A 108:15079–15084PubMedCrossRefGoogle Scholar
  122. Ralph J, Lundquist K, Brunow G et al (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem Rev 3:29–60CrossRefGoogle Scholar
  123. Rineau F, Roth D, Shah F et al (2012) The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry. Environ Microbiol 14:1477–1487PubMedCrossRefGoogle Scholar
  124. Ruiz-Dueñas FJ, Ferreira P, Martínez MJ, Martínez AT (2006) In vitro activation, purification, and characterization of Escherichia coli expressed aryl-alcohol oxidase, a unique H2O2-producing enzyme. Protein Expr Purif 45:191–199PubMedCrossRefGoogle Scholar
  125. Ruiz-Dueñas FJ, Pogni R, Morales M et al (2009) Protein radicals in fungal versatile peroxidase: catalytic tryptophan radical in both compound I and compound II and studies on W164Y, W164H and W164S variants. J Biol Chem 284:7986–7994PubMedCrossRefGoogle Scholar
  126. Ruiz-Dueñas FJ, Fernández E, Martínez MJ, Martínez AT (2011) Pleurotus ostreatus heme peroxidases: an in silico analysis from the genome sequence to the enzyme molecular structure. C R Biol 334:795–805PubMedCrossRefGoogle Scholar
  127. Salame TM, Knop D, Tal D et al (2012) A gene-targeting system for Pleurotus ostreatus: demonstrating the predominance of versatile-peroxidase (mnp4) by gene replacement. Appl Environ Microbiol 78:5341–5352PubMedCrossRefGoogle Scholar
  128. Schmidt O, Liese W (1980) Variability of wood degrading enzymes of Schizophyllum commune. Holzforschung 34:67–72CrossRefGoogle Scholar
  129. Schneider T, Keiblinger KM, Schmid E et al (2012) Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J 6:1749–1762PubMedCrossRefGoogle Scholar
  130. Schwarze FW (2007) Wood decay under the microscope. Fungal Biol Rev 21:133–170CrossRefGoogle Scholar
  131. Shaw PD, Hager LP (1959) Biological chlorination: III. β-Ketoadipate chlorinase: a soluble enzyme system. J Biol Chem 234:2565–2569PubMedGoogle Scholar
  132. Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77:1153–1161PubMedCrossRefGoogle Scholar
  133. Smith AT, Doyle WA, Dorlet P, Ivancich A (2009) Spectroscopic evidence for an engineered, catalytically active Trp radical that creates the unique reactivity of lignin peroxidase. Proc Natl Acad Sci U S A 106:16084–16089PubMedCrossRefGoogle Scholar
  134. Snajdr J, Steffen KT, Hofrichter M, Baldrian P (2010) Transformation of 14C-lableled lignin and humic substances in forest soil by the saprobic basidiomycetes Gymnopus erythropus and Hypholoma fasciculare. Soil Biol Biochem 42:1541–1548CrossRefGoogle Scholar
  135. Srebotnik E, Messner KE (1991) Immunoelectron microscopical study of the porosity of brown rot wood. Holzforschung 45:95–101CrossRefGoogle Scholar
  136. Srebotnik E, Messner K (1994) A simple method that uses differential staining and light microscopy to assess the selectivity of wood delignification by white rot fungi. Appl Environ Microbiol 60:1383–1386PubMedGoogle Scholar
  137. Srebotnik E, Messner K, Foisner R, Petterson B (1988) Ultrastructural localization of ligninase of Phanerochaete chrysosporium by immunogold labeling. Curr Microbiol 16:221–227CrossRefGoogle Scholar
  138. Stajich JE, Wilke SK, Ahren D et al (2010) Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc Natl Acad Sci U S A 107:11889–11894PubMedCrossRefGoogle Scholar
  139. Steffen KT, Hatakka A, Hofrichter M (2002) Degradation of humic acids by the litter-decomposing basidiomycete Collybia dryophila. Appl Environ Microbiol 68:3442–3448PubMedCrossRefGoogle Scholar
  140. Sugano Y (2009) DyP-type peroxidases comprise a novel heme peroxidase family. Cell Mol Life Sci 66:1387–1403PubMedCrossRefGoogle Scholar
  141. Sugano Y, Muramatsu R, Ichiyanagi A et al (2007) DyP, a Unique Dye-decolorizing peroxidase, represents a novel heme peroxidase family: ASP171 replaces the distal histidine of classical peroxidases. J Biol Chem 282:36652–36658PubMedCrossRefGoogle Scholar
  142. Sundaramoorthy M, Kishi K, Gold MH, Poulos TL (1994) The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution. J Biol Chem 269:32759–32767PubMedGoogle Scholar
  143. Sundaramoorthy M, Terner J, Poulos TL (1995) The crystal structure of chloroperoxidase: a heme peroxidase–cytochrome P450 functional hybrid. Structure 3:1367–1378PubMedCrossRefGoogle Scholar
  144. Suzuki MR, Hunt CG, Houtman CJ et al (2006) Fungal hydroquinones contribute to brown rot of wood. Environ Microbiol 8:2214–2223PubMedCrossRefGoogle Scholar
  145. Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26CrossRefGoogle Scholar
  146. Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221:661–663PubMedCrossRefGoogle Scholar
  147. Ullrich R, Nüske J, Scheibner K et al (2004) Novel haloperoxidase from the agaric basidiomycete Agrocybe aegerita oxidizes aryl alcohols and aldehydes. Appl Environ Microbiol 70:4575–4581PubMedCrossRefGoogle Scholar
  148. Urzúa U, Kersten PJ, Vicuña R (1998) Kinetics of Mn3+-oxalate formation and decay in reactions catalyzed by manganese peroxidase of Ceriporiopsis subvermispora. Arch Biochem Biophys 360:215–222PubMedCrossRefGoogle Scholar
  149. Vaario LM, Heinonsalo J, Spetz P et al (2012) The ectomycorrhizal fungus Tricholoma matsutake is a facultative saprotroph in vitro. Mycorrhiza 22:409–418PubMedCrossRefGoogle Scholar
  150. van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91:1477–1492PubMedCrossRefGoogle Scholar
  151. Vanden Wymelenberg A, Sabat G, Martinez D et al (2005) The Phanerochaete chrysosporium secretome: database predictions and initial mass spectrometry peptide identifications in cellulose-grown medium. J Biotechnol 118:17–34PubMedCrossRefGoogle Scholar
  152. Vanden Wymelenberg A, Sabat G, Mozuch M et al (2006a) Structure, organization, and transcriptional regulation of a family of copper radical oxidase genes in the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 72:4871–4877CrossRefGoogle Scholar
  153. Vanden Wymelenberg A, Minges P, Sabat G et al (2006b) Computational analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveals complex mixtures of secreted proteins. Fungal Genet Biol 43:343–356CrossRefGoogle Scholar
  154. Vanden Wymelenberg A, Gaskell J, Mozuch MD et al (2009) Transcriptome and secretome analysis of Phanerochaete chrysosporium reveal complex patterns of gene expression. Appl Environ Microbiol 75:4058–4068CrossRefGoogle Scholar
  155. Vanden Wymelenberg A, Gaskell J, Mozuch MD et al (2010) Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl Environ Microbiol 76:3599–3610CrossRefGoogle Scholar
  156. Vanden Wymelenberg A, Gaskell J, Mozuch M et al (2011) Significant alteration of gene expression in wood decay fungi Postia placenta and Phanerochaete chrysosporium by plant species. Appl Environ Microbiol 77:4499–4507CrossRefGoogle Scholar
  157. Vincent D, Kohler A, Claverol S et al (2012) Secretome of the free-living mycelium from the ectomycorrhizal basidiomycete Laccaria bicolor. J Proteome Res 11:157–171PubMedCrossRefGoogle Scholar
  158. Wariishi H, Valli K, Gold MH (1992) Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J Biol Chem 267:23688–23695PubMedGoogle Scholar
  159. Welinder KG (1992) Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 2:388–393CrossRefGoogle Scholar
  160. Westereng B, Ishida T, Vaaje-Kolstad G et al (2011) The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS One 6:e27807PubMedCrossRefGoogle Scholar
  161. Whittaker JW (2005) The radical chemistry of galactose oxidase. Arch Biochem Biophys 433:227–239PubMedCrossRefGoogle Scholar
  162. Whittaker MM, Kersten PJ, Nakamura N et al (1996) Glyoxal oxidase from Phanerochaete chrysosporium is a new radical-copper oxidase. J Biol Chem 271:681–687PubMedCrossRefGoogle Scholar
  163. Whittaker MM, Kersten PJ, Cullen D, Whittaker JW (1999) Identification of catalytic residues in glyoxal oxidase by targeted mutagenesis. J Biol Chem 274:36226–36232PubMedCrossRefGoogle Scholar
  164. Worrall JJ, Anagnost SE, Zabel RA (1997) Comparison of wood decay among diverse lignicolous fungi. Mycologia 89:199–219CrossRefGoogle Scholar
  165. Xu G, Goodell B (2001) Mechanisms of wood degradation by brown-rot fungi: chelator-mediated cellulose degradation and binding of iron by cellulose. J Biotechnol 87:43–57PubMedCrossRefGoogle Scholar
  166. Yelle DJ, Ralph J, Lu F, Hammel KE (2008) Evidence for cleavage of lignin by a brown rot basidiomycete. Environ Microbiol 10:1844–1849PubMedCrossRefGoogle Scholar
  167. Yelle DJ, Wei D, Ralph J, Hammel KE (2011) Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta. Environ Microbiol 13:1091–1100PubMedCrossRefGoogle Scholar
  168. Zubieta C, Joseph R, Sri Krishna S et al (2007) Identification and structural characterization of heme binding in a novel dye-decolorizing peroxidase, TyrA. Protein Struct Func Bioinform 69:234–243CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.USDA Forest Products LaboratoryMadisonUSA

Personalised recommendations