Skip to main content

Establishment of Actinorhizal Symbioses

  • Chapter
  • First Online:
Symbiotic Endophytes

Abstract

Actinorhizal symbioses are mutualistic associations between plants belonging to eight angiosperm families and soil bacteria of the genus Frankia. These interactions lead to the formation of new root organs, actinorhizal nodules, where the bacteria are hosted and fix atmospheric nitrogen thus providing the plant with an almost unlimited source of nitrogen for its nutrition. Recent progress in actinorhizal plants and Frankia genomics has increased our understanding of the molecular events that control these symbiotic interactions. In this chapter, we summarise our current knowledge of the signalling mechanisms and cellular events that occur during the establishment of actinorhizal symbioses. We describe what is known about the signal exchanges occurring prior to infection. We give an overview of the cellular and molecular mechanisms controlling the infection of actinorhizal plant cells by symbiotic Frankia bacteria. Finally, we review what is currently known about actinorhizal nodule development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Lateif K, Bogusz D, Hocher V (2012) The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal Behav 7(6):636–641

    Article  PubMed  CAS  Google Scholar 

  • Alloisio N, Queiroux C, Fournier P, Pujic P, Normand P, Vallenet D, Médigue C, Yamaura M, Kakoi K, Kucho K (2010) The Frankia alni symbiotic transcriptome. Mol Plant Microbe Interact 23:593–607

    Article  PubMed  CAS  Google Scholar 

  • Baker DD, Mullin BC (1992) Actinorhizal symbioses. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, NY, pp 259–292

    Google Scholar 

  • Baker DD, Schwintzer CR (1990) Introduction. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and Actinorhizal plants. Academic, New York, NY, pp 157–176

    Google Scholar 

  • Beatty PH, Good AG (2011) Plant science. Future prospects for cereals that fix nitrogen. Science 333:416–417

    Article  PubMed  CAS  Google Scholar 

  • Beauchemin NJ, Furnholm T, Lavenus J, Svistoonoff S, Doumas P, Bogusz D, Laplaze L, Tisa LS (2012) Casuarina root exudates alter the physiology, surface properties, and plant infectivity of Frankia sp. strain CcI3. Appl Environ Microbiol 78:575–580

    Article  PubMed  CAS  Google Scholar 

  • Berg RH (1990) Cellulose and xylans in the interface capsule in symbiotic cells of actinorhizae. Protoplasma 159:35–43

    Article  CAS  Google Scholar 

  • Berry AL, Sunnel LA (1990) The infection process and nodule development. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic, New York, NY, pp 61–81

    Google Scholar 

  • Berry AM, McIntyre L, McCully M (1986) Fine structure of root hair infection leading to nodulation in the Frankia-Alnus symbiosis. Can J Bot 64:292–305

    Article  Google Scholar 

  • Bickhart DM, Gogarten JP, Lapierre P, Tisa LS, Normand P, Benson DR (2009) Insertion sequence content reflects genome plasticity in strains of the root nodule actinobacterium Frankia. BMC Genomics 10:468

    Article  PubMed  Google Scholar 

  • Callaham D, Torrey JG (1977) Prenodule formation and primary nodule development in roots of Comptonia (Myricaceae). Can J Bot 55:2306–2318

    Article  Google Scholar 

  • Callaham D, Newcomb W, Torrey JG, Peterson RL (1979) Root hair infection in actinomycete-induced root nodule initiation in Casuarina, Myrica and Comptonia. Bot Gaz 140:S1–S9

    Article  Google Scholar 

  • Cérémonie H, Debellé F, Fernandez MP (1999) Structural and functional comparison of Frankia root hair deforming factor and rhizobia Nod factor. Can J Bot 77:1293–1301

    Google Scholar 

  • Den Herder G, Van Isterdael G, Beeckman T, De Smet I (2010) The roots of a new green revolution. Trends Plant Sci 15:600–607

    Article  Google Scholar 

  • Diem HG, Dommergues YR (1990) Current and potential uses and management of Casuarinaceae in the tropics and subtropics. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic, San Diego, CA, pp 317–342

    Google Scholar 

  • Diouf D, Gherbi H, Prin Y, Franche C, Duhoux E, Bogusz D (1995) Hairy root nodulation of Casuarina glauca: a system for the study of symbiotic gene expression in an actinorhizal tree. Mol Plant Microbe Interact 8:532–537

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ (2011) Phylogenetic perspectives on the origins of nodulation. Mol Plant Microbe Interact 24:1289–1295

    Article  PubMed  CAS  Google Scholar 

  • Ferguson BJ, Indrasumunar A, Hayashi S, Lin M-H, Lin Y-H, Reid DE, Gresshoff PM (2010) Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol 52:61–76

    Article  PubMed  CAS  Google Scholar 

  • Franche C, Diouf D, Le QV, Bogusz D, N’Diaye A, Gherbi H, Gobé C, Duhoux E (1997) Genetic transformation of the actinorhizal tree Allocasuarina verticillata by Agrobacterium tumefaciens. Plant J 11:897–904

    Article  CAS  Google Scholar 

  • Geurts R, Lillo A, Bisseling T (2012) Exploiting an ancient signalling machinery to enjoy a nitrogen fixing symbiosis. Curr Opin Plant Biol 15:1–6

    Article  Google Scholar 

  • Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Péret B, Laplaze L, Franche C et al (2008a) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc Natl Acad Sci 105:4928–4932

    Article  PubMed  CAS  Google Scholar 

  • Gherbi H, Nambiar-Veetil M, Chonglu Z, Félix J, Autran D, Girardin R, Vaissayre V, Auguy F, Bogusz D, Franche C (2008b) Post-transcriptional gene silencing in the root system of the actinorhizal tree Allocasuarina verticillata. Mol Plant Microbe Interact 21:518–524

    Article  PubMed  CAS  Google Scholar 

  • Hammad Y, Nalin R, Marechal J, Fiasson K, Pepin R, Berry AM, Normand P, Domenach A-M (2003) A possible role for phenyl acetic acid (PAA) on Alnus glutinosa nodulation by Frankia. Plant Soil 254:193–205

    Article  CAS  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions. J Exp Bot 63(9):3429–3444

    Article  PubMed  CAS  Google Scholar 

  • Hocher V, Auguy F, Argout X, Laplaze L, Franche C, Bogusz D (2006) Expressed sequence-tag analysis in Casuarina glauca actinorhizal nodule and root. New Phytol 169:681–688

    Article  PubMed  Google Scholar 

  • Hocher V, Alloisio N, Florence A, Fournier P, Doumas P, Pujic P, Gherbi H, Queiroux C, Da Silva C, Wincker P et al (2011a) Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol 156:700–711

    Article  PubMed  CAS  Google Scholar 

  • Hocher V, Alloisio N, Bogusz D, Normand P (2011b) Early signaling in actinorhizal symbioses. Plant Signal Behav 6:1377–1379

    Article  PubMed  CAS  Google Scholar 

  • Imanishi L, Vayssières A, Franche C, Bogusz D, Wall L, Svistoonoff S (2011) Transformed hairy roots of the actinorhizal shrub Discaria trinervis: a valuable tool for studying actinorhizal symbiosis in the context of intercellular infection. BMC Proc 5:P85

    Article  Google Scholar 

  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633

    Article  PubMed  CAS  Google Scholar 

  • Laplaze L, Gherbi H, Frutz T, Pawlowski K, Franche C, Macheix JJ, Auguy F, Bogusz D, Duhoux E (1999) Flavan-containing cells delimit Frankia-infected compartments in Casuarina glauca nodules. Plant Physiol 121:113–122

    Article  PubMed  CAS  Google Scholar 

  • Laplaze L, Duhoux E, Franche C, Frutz T, Svistoonoff S, Bisseling T, Bogusz D, Pawlowski K (2000a) Casuarina glauca prenodule cells display the same differentiation as the corresponding nodule cells. Mol Plant Microbe Interact 13:107–112

    Article  PubMed  CAS  Google Scholar 

  • Laplaze L, Ribeiro A, Franche C, Duhoux E, Auguy F, Bogusz D, Pawlowski K (2000b) Characterization of a Casuarina glauca nodule-specific subtilisin-like protease gene, a homolog of Alnus glutinosa ag12. Mol Plant Microbe Interact 13:113–117

    Article  PubMed  CAS  Google Scholar 

  • Markmann K, Gábor G, Parniske M (2008) Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol 6:e68

    Article  PubMed  Google Scholar 

  • Mastronunzio JE, Tisa LS, Normand P, Benson DR (2008) Comparative secretome analysis suggests low plant cell wall degrading capacity in Frankia symbionts. BMC Genomics 9:47

    Article  PubMed  Google Scholar 

  • Miller IM, Baker DD (1985) The initiation, development and structure of root nodules in Elaeagnus angustifolia L. (Elaeagnaceae). Protoplasma 128:107–119

    Article  Google Scholar 

  • Normand P, Lapierre P, Tisa LS, Gogarten Johann P, Alloisio N, Bagnarol E, Bassi CA, Berry AM, Bickhart DM, Choisne N et al (2007) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15

    Article  PubMed  Google Scholar 

  • Obertello M, Sy MO, Laplaze L et al (2003) Actinorhizal nitrogen fixing nodules: infection process, molecular biology and genomics. Afr J Biotechnol 2:528–538

    CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski K, Bisseling T (1996) Rhizobial and actinorhizal symbioses: what are the shared features? Plant Cell 8:1899

    PubMed  CAS  Google Scholar 

  • Pawlowski K, Demchenko KN (2012) The diversity of actinorhizal symbiosis. Protoplasma 249(4):967–979

    Article  PubMed  Google Scholar 

  • Pawlowski K, Sprent JI (2008) Comparison between actinorhizal and legume symbiosis. In: Pawlowski K, Sprent JI, Pawlowski K, Newton WE, Dilworth MJ, James EK, Sprent Janet I, Newton WE (eds) Nitrogen fixation: origins, applications, and research progress, Nitrogen-fixing actinorhizal symbioses. Springer, Dordrecht, pp 261–288

    Google Scholar 

  • Pawlowski K, Jacobsen KR, Alloisio N, Ford Denison R, Klein M, Tjepkema JD, Winzer T, Sirrenberg A, Guan C, Berry AM (2007) Truncated hemoglobins in actinorhizal nodules of Datisca glomerata. Plant Biol (Stuttg) 9:776–785

    Article  CAS  Google Scholar 

  • Péret B, Swarup R, Jansen L, Devos G, Auguy F, Collin M, Santi C, Hocher V, Franche C, Bogusz D et al (2007) Auxin influx activity is associated with Frankia infection during actinorhizal nodule formation in Casuarina glauca. Plant Physiol 144:1852–1862

    Article  PubMed  Google Scholar 

  • Péret B, Svistoonoff S, Lahouze B, Auguy F, Santi C, Doumas P, Laplaze L (2008) A role for auxin during actinorhizal symbioses formation? Plant Signal Behav 3:34–35

    Article  PubMed  Google Scholar 

  • Péret B, Svistoonoff S, Laplaze L (2009) When plants socialize: symbioses and root development. In: Beeckman T (ed) Root development, vol 37, Annual plant reviews. Wiley-Blackwell, Hoboken, NJ, pp 209–238

    Chapter  Google Scholar 

  • Perrine-Walker F, Doumas P, Lucas M, Vaissayre V, Beauchemin NJ, Band LR, Chopard J, Crabos A, Conejero G, Péret B et al (2010) Auxin carriers localization drives auxin accumulation in plant cells infected by Frankia in Casuarina glauca actinorhizal nodules. Plant Physiol 154:1372–1380

    Article  PubMed  CAS  Google Scholar 

  • Perrine-Walker F, Gherbi H, Imanishi L, Hocher V, Ghodhbane-Gtari F, Lavenus J, Benabdoun FM, Nambiar-Veeti M, Svistoonoff S, Laplaze L (2011) Symbiotic signaling in actinorhizal symbioses. Curr Protein Pept Sci 12:156–164

    Article  PubMed  CAS  Google Scholar 

  • Persson T, Benson DR, Normand P, Vanden Heuvel B, Pujic P, Chertkov O, Teshima H, Bruce DC, Detter C, Tapia R et al (2011) Genome sequence of ‘Candidatus Frankia datiscae’ Dg1, the uncultured microsymbiont from nitrogen-fixing root nodules of the Dicot Datisca glomerata. J Bacteriol 193:7017–7018

    Article  PubMed  CAS  Google Scholar 

  • Pujic P, Fournier P, Alloisio N, Hay A-E, Maréchal J, Anchisi S, Normand P (2012) Lectin genes in the Frankia alni genome. Arch Microbiol 194:47–56

    Article  PubMed  CAS  Google Scholar 

  • Popovici J, Comte G, Bagnarol E, Alloisio N, Fournier P, Bellvert F, Bertrand C, Fernandez MP (2010) Differential effects of rare specific flavonoids on compatible and incompatible strains in the Myrica gale-Frankia actinorhizal symbiosis. Appl Environ Microbiol 76(8):2451–2460

    Article  PubMed  CAS  Google Scholar 

  • Pueppke SG, Broughton WJ (1999) Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol Plant Microbe Interact 12:293–318

    Article  PubMed  CAS  Google Scholar 

  • Racette S, Torrey JG (1989) Root nodule initiation in Gymnostoma (Casuarinaceae) and Shepherdia (Elaeagnaceae) induced by Frankia strain HFPGpI1. Can J Bot 67:2873–2879

    Article  Google Scholar 

  • Ribeiro A, Akkermans AD, van Kammen A, Bisseling T, Pawlowski K (1995) A nodule-specific gene encoding a subtilisin-like protease is expressed in early stages of actinorhizal nodule development. Plant Cell 7:785–794

    PubMed  CAS  Google Scholar 

  • Schwintzer CR, Berry AM, Disney LD (1982) Seasonal patterns of root nodule growth, endophyte morphology, nitrogenase activity, and shoot development in Myrica-Gale. Can J Bot 60:746–757

    Article  Google Scholar 

  • Silvester WB, Harris SL, Tjepkema JD (1990) Oxygen regulation and hemoglobin. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic, San Diego, CA, pp 157–176

    Google Scholar 

  • Soltis DE, Soltis PS, Morgan DR, Swensen SM, Mullin BC, Dowd JM, Martin PG (1995) Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc Natl Acad Sci USA 92:2647–2651

    Article  PubMed  CAS  Google Scholar 

  • Svistoonoff S, Laplaze L, Auguy F, Runions J, Duponnois R, Haseloff J, Franche C, Bogusz D (2003) cg12 expression is specifically linked to infection of root hairs and cortical cells during Casuarina glauca and Allocasuarina verticillata actinorhizal nodule development. Mol Plant Microbe Interact 16:600–607

    Article  PubMed  CAS  Google Scholar 

  • Svistoonoff S, Laplaze L, Liang J, Ribeiro A, Gouveia MC, Auguy F, Fevereiro P, Franche C, Bogusz D (2004) Infection-related activation of the cg12 promoter is conserved between actinorhizal and legume-rhizobia root nodule symbiosis. Plant Physiol 136:3191–3197

    Article  PubMed  CAS  Google Scholar 

  • Swensen SM (1996) The evolution of actinorhizal symbioses: evidence for multiple origins of the symbiotic association. Am J Bot 83:1503–1512

    Article  Google Scholar 

  • Torrey JG (1976) Initiation and development of root nodules of Casuarina (Casuarinaceae). Am J Bot 63:335–345

    Article  Google Scholar 

  • Tromas A, Parizot B, Diagne N, Champion A, Hocher V, Cissoko M, Crabos A, Prodjinoto H, Lahouze B, Bogusz D, Laplaze L, Svistoonoff S (2012) Heart of endosymbioses: transcriptomics reveals a conserved genetic program among arbuscular mycorrhizal, actinorhizal and legume-rhizobial symbioses. PLoS One 7:e44742

    Article  PubMed  CAS  Google Scholar 

  • Udwary DW, Gontang EA, Jones AC, Jones CS, Schultz AW, Winter JM, Yang JY, Beauchemin N, Capson TL, Clark BR et al (2011) Comparative genomic and proteomic analysis of the actinorhizal symbiont Frankia reveals significant natural product biosynthetic potential. Appl Environ Microbiol 77(110):3617–3625

    Article  PubMed  CAS  Google Scholar 

  • Valverde C, Wall LG (1999) Time course of nodule development in the Discaria trinervis (Rhamnaceae)—Frankia symbiosis. New Phytol 141:345–354

    Article  Google Scholar 

  • Wall LG (2000) The actinorhizal symbiosis. J Plant Growth Regul 19:167–182

    PubMed  CAS  Google Scholar 

  • Wall LG, Berry AM (2008) Early interactions, infection and nodulation in actinorhizal symbiosis. In: Pawlowski K, Newton WE, Dilworth MJ, James EK, Sprent Janet I, Newton WE (eds) Nitrogen fixation: origins, applications, and research progress, Nitrogen-fixing actinorhizal symbioses. Springer, Dordrecht, pp 147–166

    Google Scholar 

  • Wheeler CT, Henson IE (1979) Hormones in plants bearing actinomycete nodules. Bot Gaz 140:52–57

    Article  CAS  Google Scholar 

  • Wheeler C, Crozier A, Sandberg G (1984) The biosynthesis of indole-3-acetic acid by Frankia. Plant Soil 78:99–104

    Article  CAS  Google Scholar 

  • Zhong C, Pinyopusarek K, Kalinganire A, Franche C (2011) Improving smallholder livelihoods through improved casuarina productivity: proceedings of the 4th international casuarina workshop. China Forestry Publishing House, Haikou

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Laplaze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tromas, A. et al. (2013). Establishment of Actinorhizal Symbioses. In: Aroca, R. (eds) Symbiotic Endophytes. Soil Biology, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39317-4_5

Download citation

Publish with us

Policies and ethics