Skip to main content

Carbon Metabolism and Costs of Arbuscular Mycorrhizal Associations to Host Roots

  • Chapter
  • First Online:
Symbiotic Endophytes

Part of the book series: Soil Biology ((SOILBIOL,volume 37))

Abstract

Arbuscular mycorrhizal (AM) fungi form beneficial associations with host root systems, during which the soil nutrient acquisition by the fungal symbiont induces an alteration in AM root carbon metabolism and belowground carbon costs of the host plant. The reciprocal exchange of host-derived carbohydrates for the symbiont-acquired nutrients may be controlled by both partners in the symbiosis. The carbohydrates not only serve as the fuel for fungal growth and maintenance but also provide energy for nutrient uptake and assimilation of inorganic minerals such as nitrogen and phosphorus. The belowground carbon cost may be further influenced by biotic and abiotic factors that affect the basic carbon metabolism of the AM roots. In natural and agricultural soils, major factors affecting carbon economy include the concentration and source of nitrogen or phosphorus nutrition, the developmental stages of the host, and the presence of additional symbionts, such as nitrogen-fixing bacteria in legume nodules. Since each of these factors may complicate the measurement of the carbon economy, several methods are proposed to evaluate the carbon costs of nutrient uptake and assimilation by AM roots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida JPF, Hartwig UA, Frehner M, Nosberger J, Luscher A (2000) Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.). J Exp Bot 51:1289–1297

    Article  PubMed  CAS  Google Scholar 

  • Al-Niemi TS, Kahn ML, McDermott TR (1998) Phosphorus uptake by bean nodules. Plant Soil 198:71–78

    Article  CAS  Google Scholar 

  • Atkins CA, Pate JS, Sanford PJ, Dakora FD, Matthews I (1989) Nitrogen nutrition of nodules in relation to “N-hunger” in cowpea (Vigna unguiculata L. Walp). Plant Physiol 90:1644–1649

    Article  PubMed  CAS  Google Scholar 

  • Azcon R, Gomez M, Tobar R (1992) Effects of nitrogen source on growth, nutrition, photosynthetic rate and nitrogen metabolism of mycorrhizal and phosphorous-fertilized plants of Lactuca sativa L. New Phytol 121:227–234

    Article  CAS  Google Scholar 

  • Baier MC, Keck M, Gödde V, Niehaus K, Küster H, Hohnjec N (2010) Knockdown of the symbiotic sucrose synthase MtSucS1 affects arbuscule maturation and maintenance in mycorrhizal roots of Medicago truncatula. Plant Physiol 152:1000–1014

    Article  PubMed  CAS  Google Scholar 

  • Benedito VA, Li H, Dai X, Wandrey M, He J, Kaundal R, Torres-Jerez I, Gomez SK, Harrison MJ, Tang Y, Zhao PX, Udvardi MK (2010) Genomic inventory and transcriptional analysis of Medicago truncatula transporters. Plant Physiol 152:1716–1730

    Article  PubMed  CAS  Google Scholar 

  • Bethlenfalvay GJ, Phillips DA (1977) Effect of light intensity on efficiency of carbon dioxide and nitrogen reduction in Pisum sativum L. Plant Physiol 60:868–871

    Article  PubMed  CAS  Google Scholar 

  • Bethlenfalvay GJ, Brown MS, Pacovsky RS (1982a) Relationships between host and endophyte development in mycorrhizal soybeans. New Phytol 90:537–543

    Article  Google Scholar 

  • Bethlenfalvay GJ, Pacovsky RS, Brown MS, Fuller G (1982b) Mycotrophic growth and mutualistic development of host plant and fungal endophyte in an endomycorrhizal symbiosis. Plant Soil 68:43–54

    Article  Google Scholar 

  • Black KG, Mitchell DT, Osborne BA (2000) Effect of mycorrhizal-enhanced leaf phosphate status on carbon partitioning, translocation and photosynthesis in cucumber. Plant Cell Environ 23:797–809

    Article  CAS  Google Scholar 

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorous by plants. Plant Soil 134:189–207

    Article  CAS  Google Scholar 

  • Bolan NS, Robson AD, Barrow NJ (1987) Effect of vesicular arbuscular mycorrhiza on the availability of iron phosphates to plants. Plant Soil 99:401–410

    Article  CAS  Google Scholar 

  • Campos-Soriano L, García-Martínez J, Segundo BS (2012) The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol Plant Pathol 13:579–592

    Article  PubMed  CAS  Google Scholar 

  • Carling DE, Reihle WG, Brown MF, Johnston DR (1978) Effects of vesicular arbuscular mycorrhizal fungus on nitrate reductase and nitrogenase activities in nodulating and non-nodulating soybeans. Phytopathology 68:1590–1596

    Article  CAS  Google Scholar 

  • Catford JG, Staehelin C, Lerat S, Piché Y, Vierheilig H (2003) Suppression of arbuscular mycorrhizal colonization and nodulation in split-root systems of alfalfa after pre-inoculation and treatment with Nod factors. J Exp Bot 54:1481–1487

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedi C, Singh R (1989) Response of chickpea (Cicer arietinum L.) to inoculation with Rhizobium and VA mycorrhiza. Proc Natl Acad Sci Ind B59:443–446

    Google Scholar 

  • Cluett HC, Boucher DH (1983) Indirect mutualism in the legume- Rhizobium mycorrhizal fungus interaction. Oecologia 59:405–408

    Article  Google Scholar 

  • Constable JVH, Bassirirad H, Lussenhop J, Ayalsew Z (2001) Influence of elevated CO2 and mycorrhizae on nitrogen acquisition: contrasting responses in Pinus taeda and Liquidambar styraciflua. Tree Physiol 21:83–91

    Article  PubMed  CAS  Google Scholar 

  • Daft MJ, El-Giahmi AA (1974) Effect of endogone mycorrhiza on plant growth. VII. Influence of infection on the growth and nodulation in French bean (Phaseolus vulgaris). New Phytol 73:1139–1147

    Article  Google Scholar 

  • Dermatsev V, Weingarten-Baror C, Resnick N, Gadkar V, Wininger S, Kolotilin I, Mayzlish-Gati E, Zilberstein A, Koltai H, Kapulnik Y (2010) Microarray analysis and functional tests suggest the involvement of expansins in the early stages of symbiosis of the arbuscular mycorrhizal fungus Glomus intraradices on tomato (Solanum lycopersicum). Mol Plant Pathol 11:121–135

    Article  PubMed  CAS  Google Scholar 

  • Drevon JJ, Hartwig UA (1997) Phosphorus deficiency increases the argon- induced decline of nodule nitrogenase activity in soybean and alfalfa. Planta 201:463–469

    Article  CAS  Google Scholar 

  • Fredeen AL, Terry N (1988) Influence of vesicular-arbuscular mycorrhizal infection and soil phosphorous level on growth and carbon metabolism of soybean. Can J Bot 66:2311–2316

    Google Scholar 

  • Frey B, Schuepp H (1992) Transfer of symbiotically fixed nitrogen from Berseem (Trifolium alexandrinum L.) to maize via vesicular-arbuscular mycorrhizal hyphae. New Phytol 122:447–454

    Article  CAS  Google Scholar 

  • Furlan V, Fortin JA (1977) Effects of light intensity on the formation of vesicular arbuscular endomycorrhizas on Allium cepa by Gigaspora calospora. New Phytol 79:335–340

    Article  Google Scholar 

  • Gallou A, Declerck S, Cranenbrouck S (2011) Transcriptional regulation of defence genes and involvement of the WRKY transcription factor in arbuscular mycorrhizal potato root colonization. Funct Integr Genomics 12:183–198

    Article  PubMed  Google Scholar 

  • Garrido JM, Morcillo RJ, Rodríguez JA, Bote JA (2010) Variations in the mycorrhization characteristics in roots of wild-type and ABA-deficient tomato are accompanied by specific transcriptomic alterations. Mol Plant Microbe Interact 23:651–664

    Article  PubMed  CAS  Google Scholar 

  • Gaude N, Bortfeld S, Duensing N, Lohse M, Krajinski F (2012) Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J 69:510–528

    Article  PubMed  CAS  Google Scholar 

  • Gavito ME, Curtis PS, Mikkelson TN, Jakobsen I (2000) Atmospheric CO2 and mycorrhiza effects on biomass allocation and nutrient uptake of nodulated pea (Pisum sativum L.) plants. J Exp Bot 51:1931–1938

    Article  PubMed  CAS  Google Scholar 

  • Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ (2009) Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol 9:10

    Article  PubMed  Google Scholar 

  • Goss MJ, de Varennes A (2002) Soil disturbance reduces the efficacy of mycorrhizal associations for early soybean growth and N2 fixation. Soil Biol Biochem 34:1167–1173

    Article  CAS  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Hairu J, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    Article  PubMed  CAS  Google Scholar 

  • Gutjahr C, Novero M, Welham T, Wang T, Bonfante P (2011) Root starch accumulation in response to arbuscular mycorrhizal colonization differs among Lotus japonicus starch mutants. Planta 234:639–646

    Article  PubMed  CAS  Google Scholar 

  • Harris D, Paul EA (1987) Carbon requirements of vesicular-arbuscular mycorrhizae. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC, Boca Raton, FL, pp 93–105

    Google Scholar 

  • Harris D, Pacovsky RS, Paul EA (1985) Carbon economy of soybean-Rhizobium-Glomus associations. New Phytol 101:427–440

    Article  CAS  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  PubMed  CAS  Google Scholar 

  • Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N (2011) A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp. is crucial for the symbiotic relationship with plants. Plant Cell 23:3812–3823

    Article  PubMed  CAS  Google Scholar 

  • Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115:77–83

    Article  Google Scholar 

  • Jia Y, Gray VM, Straker CJ (2004) The influence of Rhizobium and arbuscular mycorrhizal fungi on Nitrogen and Phosphorous accumulation by Vicia faba. Ann Bot Lond 94:251–258

    Article  CAS  Google Scholar 

  • Jones MD, Durall DM, Tinker PB (1991) Fluxes of carbon and phosphorous between symbionts in willow ectomycorrhizas and their changes with time. New Phytol 119:99–106

    Article  CAS  Google Scholar 

  • Kawai Y, Yamamoto Y (1986) Increase in the formation and nitrogen fixation of soybean nodules by vesicular-arbuscular mycorrhiza. Plant Cell Physiol 27:399–405

    CAS  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bucking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  PubMed  CAS  Google Scholar 

  • Koch KE, Johnson CR (1984) Photosynthate partitioning in slit root Citrus seedlings with mycorrhizal root systems. Plant Physiol 75:26–30

    Article  PubMed  CAS  Google Scholar 

  • Koide R (1985) The nature of growth depressions in sunflower caused by vesicular arbuscular mycorrhizal infection. New Phytol 99:449–462

    Article  Google Scholar 

  • Koide R, Elliott G (1989) Cost, benefit and efficiency of the vesicular-arbuscular mycorrhizal symbiosis. Funct Ecol 3:252–255

    Google Scholar 

  • Krajinski F, Hause B, Gianinazzi-Pearson V, Franken P (2002) Mtha1, a plasma membrane H + -ATPase gene from Medicago truncatula, shows arbuscule-specific induced expression in mycorrhizal tissue. Plant Biol 4:754–761

    Article  CAS  Google Scholar 

  • Kucey RMN, Paul EA (1981) Carbon flow in plant microbial associations. Science 213:473–474

    Article  PubMed  Google Scholar 

  • Kucey RMN, Paul EA (1982) Carbon flow, photosynthesis and N2 fixation in mycorrhizal and nodulated faba beans (Vicia faba L.). Soil Biol Biochem 14:407–412

    Article  Google Scholar 

  • Lodwig E, Poole P (2003) Metabolism of Rhizobium bacteroids. Crit Rev Plant Sci 22:37–78

    Article  CAS  Google Scholar 

  • Luis I, Lim G (1988) Differential response in growth and mycorrhizal colonisation of soybean to inoculation with two isolates of Glomus clarum in soils of different P availability. Plant Soil 112:37–43

    Article  Google Scholar 

  • Maekawa S, Sato T, Asada Y, Yasuda S, Yoshida M, Chiba Y, Yamaguchi J (2012) The Arabidopsis ubiquitin ligases ATL31 and ATL6 control the defense response as well as the carbon/nitrogen response. Plant Mol Biol 79:217–227

    Article  PubMed  CAS  Google Scholar 

  • Maillet F, Poinsot V, Andre’ O, Puech-Pages V, Haouy A, Guenier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Becard G, Denarie J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 649:58–63

    Article  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 59:89–102

    Google Scholar 

  • Mortimer PE, Archer E, Valentine AJ (2005) Mycorrhizal C costs and nutritional benefits in developing grapevines. Mycorrhiza 15:159–165

    Article  PubMed  CAS  Google Scholar 

  • Mortimer PE, Pérez-Fernández MA, Valentine AJ (2008) The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biol Biochem 40:1019–1027

    Article  CAS  Google Scholar 

  • Mortimer PE, Perez-Fernandez MA, Valentine AJ (2009) NH4 + nutrition affects the photosynthetic and respiratory C sinks in the dual symbiosis of a mycorrhizal legume. Soil Biol Biochem 41:2115–2121

    Article  CAS  Google Scholar 

  • Mortimer PE, Perez-Fernandez MA, Valentine AJ (2012) Arbuscular mycorrhiza maintains nodule function during external NH4 + supply in Phaseolus vulgaris (L.). Mycorrhiza 22:237–245

    Article  PubMed  CAS  Google Scholar 

  • Motosugi H, Yamamoto Y, Naruo T, Kitabyashi H, Ishi T (2002) Comparison of the growth and leaf mineral concentrations between three grapevine rootstocks and their corresponding tetraploids inoculated with an arbuscular mycorrhizal fungus Gigaspora margarita. Vitis 41:21–25

    CAS  Google Scholar 

  • Murphy PM (1986) Effect of light and atmospheric carbon dioxide concentration on nitrogen fixation by herbage legumes. Plant Soil 95:399–409

    Article  CAS  Google Scholar 

  • Nielson KL, Amram E, Lynch JP (2001) The effect of phosphorous availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. J Exp Bot 52:329–339

    Article  Google Scholar 

  • Nwoko H, Sanginga N (1999) Dependence of promiscuous soybean and herbaceous legumes on arbuscular mycorrhizal fungi and their response to bradyrhizobial inoculation in low P soils. Appl Soil Ecol 13:251–258

    Article  Google Scholar 

  • Olivera M, Tejera N, Iribarne C, Ocana A, Lluch C (2004) Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris): effect of phosphorous. Physiol Plantarum 121:498–505

    Article  CAS  Google Scholar 

  • Olsson PA, Johansen A (2000) Lipid and fatty acid composition of hyphae and spores of arbuscular mycorrhizal fungi at different growth stages. Mycol Res 104:429–434

    Article  CAS  Google Scholar 

  • Orcutt DM, Nilsen ET (2000) The physiology of plants under stress. Soil and biotic factors. Wiley, New York, NY

    Google Scholar 

  • Othman WMW, Li TA, Tmannetje L, Wassink GY (1991) Low-level phosphorus supply affecting nodulation, N2 fixation and growth of Cowpea (Vigna unguiculata L. Walp). Plant Soil 135:67–74

    Article  Google Scholar 

  • Pacovsky RS, Fuller G, Stafford AE, Paul EA (1986) Nutrient and growth interactions in soybeans colonized with Glomus fasciculatum and Rhizobium japonicum. Plant Soil 92:37–45

    Article  Google Scholar 

  • Parrent JL, Vilgalys R (2009) Expression of genes involved in symbiotic carbon and nitrogen transport in Pinus taeda mycorrhizal roots exposed to CO2 enrichment and nitrogen fertilization. Mycorrhiza 19:469–479

    Article  PubMed  CAS  Google Scholar 

  • Pearson JN, Jakobsen I (1993) The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labelling with 32P and 33P. New Phytol 124:489–494

    Article  CAS  Google Scholar 

  • Pearson JN, Schweiger P (1993) Scutellospora calospora (Nicol. & Gerd) associated with subterranean clover: dynamics of soluble carbohydrates. New Phytol 124:215–219

    Article  Google Scholar 

  • Peng S, Eissenstat DM, Graham JH, Williams K, Hodge NC (1993) Growth depression in mycorrhizal citrus at high-phosphorous supply. Plant Physiol 101:1063–1071

    PubMed  CAS  Google Scholar 

  • Provorov NA, Tikhonovich IA (2003) Genetic resources for improving nitrogen fixation in legume-rhizobia symbioses. Genet Resour Crop Evol 359:907–918

    Google Scholar 

  • Rodriguez JA, Morcillo RL, Vierheilig H, Ocampo JA, Ludwig-Müller J, Garrido JM (2010) Mycorrhization of the notabilis and sitiens tomato mutants in relation to abscisic acid and ethylene contents. J Plant Physiol 167:606–613

    Article  PubMed  CAS  Google Scholar 

  • Sa TM, Israel DW (1991) Energy status and function of phosphorous-deficient soybean nodules. Plant Physiol 97:928–935

    Article  PubMed  CAS  Google Scholar 

  • Sanders FE, Tinker PB (1971) Mechanism of absorption of phosphate from soil by Endogone mycorrhizae. Nature 233:278–279

    Article  PubMed  CAS  Google Scholar 

  • Schortemeyer J, Atkin OK, McFarlane N, Evans JR (1999) The impact of elevated atmospheric CO2 and nitrate supply on growth, biomass allocation, nitrogen partitioning and N2 fixation of Acacia melanoxylon. Aust J Plant Physiol 26:737–747

    Article  CAS  Google Scholar 

  • Selosse MA, Rousset F (2011) The plant-fungal marketplace. Science 333:828–829

    Article  PubMed  CAS  Google Scholar 

  • Sieverding E (1989) Ecology of VAM fungi in tropical agrosystems. Agr Ecosyst Environ 29:369–390

    Article  Google Scholar 

  • Smith SE (1980) Mycorrhizas of autotrophic higher plants. Biol Rev 55:475–510

    Article  CAS  Google Scholar 

  • Smith SE (1982) Inflow of phosphate into mycorrhizal and non-mycorrhizal plants of Trifolium subterraneum at different levels of soil phosphate. New Phytol 90:293–303

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Snellgrove RC, Splittstoesser WE, Stribley DP, Tinker PB (1982) The distribution of carbon and the demand of the fungal symbiont in leek plants with vesicular-arbuscular mycorrhizas. New Phytol 92:75–87

    Article  Google Scholar 

  • Sussanna JF, Hartwig UA (1996) The effect of elevated CO2 on symbiotic nitrogen fixation: a link between the carbon and nitrogen cycles in grassland ecosystems. Plant Soil 187:321–332

    Article  Google Scholar 

  • Tejeda-Sartorius M, Martínez de la Vega O, Délano-Frier JP (2008) Jasmonic acid influences mycorrhizal colonization in tomato plants by modifying the expression of genes involved in carbohydrate partitioning. Physiol Plant 133:339–353

    Article  PubMed  CAS  Google Scholar 

  • Thompson BD, Robson AD, Abbott LK (1990) Mycorrhizas formed by Gigaspora calospora and Glomus fasciculatum on subterranean clover in relation to soluble carbohydrate concentrations in roots. New Phytol 114:405–411

    Google Scholar 

  • Thorneley RNF (1992) Nitrogen fixation-new light on nitrogenase. Nature 360:532–533

    Article  Google Scholar 

  • Toro M, Azcon R, Barea JM (1998) The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhizal fungi, phosphate solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. New Phytol 138:265–273

    Article  CAS  Google Scholar 

  • Toussaint JP, St-Arnaud M, Charest C (2004) Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices (Schenck & Smith) and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Can J Microbiol 50:251–260

    Article  PubMed  CAS  Google Scholar 

  • Trépanier M, Bécard G, Moutoglis P, Willemot C, Gagné S, Avis TJ, Rioux JA (2005) Dependence of arbuscular-mycorrhizal fungi on their plant host for palmitic acid synthesis. Appl Environ Microbiol 71:5341–5347

    Article  PubMed  Google Scholar 

  • Udvardi MK, Tabata S, Parniske M, Stougaard M (2005) Lotus japonicus: legume research in the fast lane. Trends Plant Sci 10:222–228

    Article  PubMed  CAS  Google Scholar 

  • Vadez V, Beck DP, Lasso JH, Drevon J-J (1997) Utilization of the acetylene reduction assay to screen for tolerance of symbiotic N2 fixation to limiting P nutrition in common bean. Physiol Plantarum 99:227–232

    Article  CAS  Google Scholar 

  • Valentine AJ, Kleinert A (2007) Respiratory responses of arbuscular mycorrhizal roots to short-term alleviation of P deficiency. Mycorrhiza 17:137–143

    Article  PubMed  CAS  Google Scholar 

  • Vance CP (2002) Root-bacteria interactions: symbiotic nitrogen fixation. In: Waisel Y, Eschel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Dekker, New York, NY, pp 839–867

    Google Scholar 

  • Vesjsadova H, Siblikova D, Gryndler M, Simon T, Miksik I (1993) Influence of inoculation with Bradyrhizobium japonicum and Glomus claroideum on seed yield of soybean under greenhouse and field conditions. J Plant Nutr 16:619–629

    Article  Google Scholar 

  • Vessey JK, Layzell DB (1987) Regulation of assimilate partitioning in soybean. Initial effects following change in nitrate supply. Plant Physiol 83:341–348

    Article  PubMed  CAS  Google Scholar 

  • Williams K, Percival F, Merino J, Mooney HA (1987) Estimation of tissue construction cost from heat of combustion and organic nitrogen content. Plant Cell Environ 10:725–734

    CAS  Google Scholar 

  • Yoneyama K, Xie X, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H, Yoneyama K (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179:484–494

    Article  PubMed  CAS  Google Scholar 

  • Zsögön A, Lambais MR, Benedito VA, Figueira AVO, Peres LEP (2008) Reduced arbuscular mycorrhizal colonization in tomato ethylene mutants. Sci Agric 65:259–267

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex J. Valentine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Valentine, A.J., Mortimer, P.E., Kleinert, A., Kang, Y., Benedito, V.A. (2013). Carbon Metabolism and Costs of Arbuscular Mycorrhizal Associations to Host Roots. In: Aroca, R. (eds) Symbiotic Endophytes. Soil Biology, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39317-4_12

Download citation

Publish with us

Policies and ethics