Advertisement

Paul Erdős and Egyptian Fractions

  • Ronald L. Graham
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 25)

Abstract

One of Paul Erdős’ earliest mathematical interests was the study of so-called Egyptian fractions, that is, finite sums of distinct fractions having numerator 1. In this note we survey various results in this subject, many of which were motivated by Erdős’ problems and conjectures on such sums. This note complements the excellent treatment of this topic given by A. Schinzel in 2002.1

Keywords

Greedy Algorithm Prime Divisor Diophantine Equation Harmonic Series Unit Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. H. Ahmadi and M. N. Bleicher, On the conjectures of Erdős and Straus, and Sierpiński on Egyptian fractions, J. Math. Stat. Sci., 7 (1998), 169–185.zbMATHMathSciNetGoogle Scholar
  2. [2]
    A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fib. Quart. 11 (1973), 429–438.Google Scholar
  3. [3]
    P. J. van Albada and J. H. van Lint, Reciprocal bases for the integers, Amer. Math. Monthly 70 (1963), 170–174.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    E. J. Barbeau, Compute challenge corner: Problem 477: A brute force program, J. Rec. Math, 9 (1976/77), p. 30.Google Scholar
  5. [5]
    E. J. Barbeau, Expressing one as a sum of odd reciprocals: comments and a bibliography, Crux Mathematicorum 3 (1977), 178–181.Google Scholar
  6. [6]
    M. N. Bleicher and P. Erdős, The number of distinct subsums of Σi=1N1/i, Math. Comp 29 (1975), 29–42.zbMATHMathSciNetGoogle Scholar
  7. [7]
    M. N. Bleicher and P. Erdős, Denominators of unit fractions, J. Number Th, 8 (1976), 157–168.CrossRefzbMATHGoogle Scholar
  8. [8]
    M. N. Bleicher and P. Erdős, Denominators of unit fractions II, Illinois J. of Math. 20 (1976), 598–613.zbMATHGoogle Scholar
  9. [9]
    Robert Breusch, A special case of Egyptian fractions, solution to Advanced Problem 4512, Amer. Math. Monthly 61, (1954), 200–201.CrossRefMathSciNetGoogle Scholar
  10. [10]
    T. C. Brown and V. Rödl, Monochromatic solutions to equations with unit fractions, Bull. Australian Math. Soc. 43 (1991), 387–392.CrossRefzbMATHGoogle Scholar
  11. [11]
    N. Burshtein, On distinct unit fractions whose sum equals 1, Discrete Math. 5 (1973), 201–206.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    N. Burshtein, Improving solutions of Σi=1k1/xi=1 with restrictions as required by Barbeau respectively by Johnson, Discrete Math. 306 (2006), 1438–1439.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    N. Burshtein, An improved solution of Σi=1k1/xi=1 with restrictions as required by Barbeau respectively by Johnson, Discrete Math. 306 (2006), 1438–1439.CrossRefzbMATHMathSciNetGoogle Scholar
  14. [15]
    J. W. S. Cassels, On the representation of integers as the sums of distinct summands taken from a fixed set, Acta Sci. Math. Szeged 21 (1960), 111–124.zbMATHMathSciNetGoogle Scholar
  15. [16]
    Y.-G. Chen, On a conjecture of Erdős, Graham and Spencer, J. Number Th. 119 (2006), 307–314.CrossRefzbMATHGoogle Scholar
  16. [17]
    Y.-G. Chen and M. Tang, On the elementary symmetric functions of 1, … 1/n, Amer. Math. Monthly 119 (2012), 862–867.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [18]
    E. S. Croot III, On unit fractions with denominators from short intervals, Acta Arith. 99, (2001), 99–114.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [19]
    E. S. Croot III, On some questions of Erdős and Graham about Egyptian fractions, Mathematika 46 (1999), 359–372.CrossRefzbMATHMathSciNetGoogle Scholar
  19. [20]
    E. S. Croot III, On a coloring conjecture about unit fractions, Ann. of Math. 157 (2003), 545–556.CrossRefzbMATHMathSciNetGoogle Scholar
  20. [21]
    E. S. Croot III, Sums of the form 1/x1k modulo a prime, Integers 4, (2004), A20 6.MathSciNetGoogle Scholar
  21. [22]
    D. R. Curtiss, On Kellogg’s Diophantine problem, Amer. Math. Monthly 29 (1922), 380–387.CrossRefMathSciNetGoogle Scholar
  22. [23]
    C. Elsholtz, Sums of k unit fractions, Trans. Amer. Math. Soc. 353 (2001), 3209–3227.CrossRefzbMATHMathSciNetGoogle Scholar
  23. [25]
    P. Erdős, Beweis eines Satzes von Tschebyschef (in German), Acta Litt. Sci. Szeged 5, (1932), 194–198.Google Scholar
  24. [26]
    P. Erdős, Egy Kürschák-féle elemi számelméleti tétel általánosítása (Generalization of an elementary number-theoretic theorem of Kürschák, in Hungarian), Mat. Fiz, Lapok 39 (1932), 17–24.Google Scholar
  25. [27]
    P. Erdős, Az 1/x1 + 1/x2 + … + 1/xn=a/b egyenlet egész számú megoldásairól (On a Diophantine equation, in Hungarian), Mat. Lapok 1 (1950) 192–210.MathSciNetGoogle Scholar
  26. [28]
    P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Mono. No. 28 de L’Enseignement Math., Univ. Geneva (1980) 128 pp.Google Scholar
  27. [29]
    P. Erdős and I. Niven, On certain variations of the harmonic series, Bull. Amer. Math. Soc., 51 (1945), 433–436.CrossRefMathSciNetGoogle Scholar
  28. [30]
    P. Erdős and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85–90.CrossRefMathSciNetGoogle Scholar
  29. [31]
    J.-H. Fang and Y.-G. Chen, On a conjecture of Erdős, Graham and Spencer II, Disc. Appl. Math. 156 (2008), 2950–2958.CrossRefzbMATHMathSciNetGoogle Scholar
  30. [33]
    C. Friedman, Sums of divisors and Egyptian fractions, J. Num. Th 44 (1993), 328–339.CrossRefzbMATHGoogle Scholar
  31. [34]
    Richard J. Gillings, Mathematics in the Time of the Pharaohs, 1972, MIT Press, Dover reprint ISBN 0-486-24315-X.Google Scholar
  32. [35]
    R. L. Graham, A theorem on partitions, J. Australian Math. Soc. 4 (1963), 435–441.CrossRefGoogle Scholar
  33. [36]
    R. L. Graham, On finite sums of unit fractions, Proc. London Math. Soc. 14 (1964), 193–207.CrossRefzbMATHMathSciNetGoogle Scholar
  34. [37]
    R. L. Graham, On finite sums of reciprocals of distinct n thpowers, Pacific J. Math. 14 (1964), 85–92.CrossRefzbMATHMathSciNetGoogle Scholar
  35. [38]
    S. Guo, A counterexample to a conjecture of Erdős, Graham and Spencer, The Electronic Journal of Combinatorics 15.43 (2008): 1.Google Scholar
  36. [39]
    R. K. Guy, Unsolved Problems in Number Theory, Third edition, Springer, New York, 2004, 437 pp.CrossRefGoogle Scholar
  37. [40]
    Chao Ko, Chi Sun and S. J. Chang, On equations 4/n = 1/x + 1/y + 1/z, Acta Sci. Natur. Szechuanensis, 2 (1964), 21–35.Google Scholar
  38. [41]
    J. Kürschák. A harmonikus sorról (On the harmonic series, in Hungarian), Mat. Fiz, Lapok 27 (1918), 288–300.Google Scholar
  39. [43]
    Greg Martin, Dense Egyptian fractions, Trans. Amer. Math. Soc. 351 (1999), 3641–3657.CrossRefzbMATHMathSciNetGoogle Scholar
  40. [44]
    Greg Martin, Denser Egyptian fractions, Acta Arith. 95 (2000), 231–260.zbMATHMathSciNetGoogle Scholar
  41. [45]
    R. Nowakowski, Unsolved Problems, 1989–1999, Amer. Math. Monthly, 106, 959–962.Google Scholar
  42. [46]
    M. R. Obláth, Sur l’equation diophantienne 4/n = 1/x1 + 1/x2 + 1/x3, Mathesis 59 (1950), 308–316.zbMATHMathSciNetGoogle Scholar
  43. [47]
    Gay Robins and Charles Shute, The Rhind Mathematical Papyrus: an ancient Egyptian text, Dover, New York, 1987, 88pp.zbMATHGoogle Scholar
  44. [48]
    J. Sander, On 4/n = 1/x + 1/y + 1/z and Rosser’s sieve, Acta Arith., 59 (1991), 183–204.zbMATHMathSciNetGoogle Scholar
  45. [49]
    C. Sándor, On a problem of Erdős, J. Number Th. 63 (1997), 203–210.CrossRefzbMATHGoogle Scholar
  46. [50]
    C. Sándor, On the number of solutions of the Diophantine equation Σi=1n1/xi=1 , Period. Math. Hungar. 47 (2003), no. 1–2, 215–219.CrossRefzbMATHMathSciNetGoogle Scholar
  47. [52]
    A. Schinzel, Erdős’ work on finite sums of unit fractions, in Paul Erdős and His Mathematics, vol. I, Springer, Berlin, 2002, pp. 629–636.Google Scholar
  48. [54]
    I. Shparlinski, On a question of Erdős and Graham, Archiv der Math. 78 (2002), 445–448.CrossRefzbMATHMathSciNetGoogle Scholar
  49. [55]
    W. Sierpiński, Sur les décompositions de nombres rationnels en fractions primaires, Mathesis, 65 (1956), 16–32.zbMATHMathSciNetGoogle Scholar
  50. [56]
    B. M. Stewart, Sums of distinct divisors, Amer. J. Math. 76 (1954), 779–785.CrossRefzbMATHMathSciNetGoogle Scholar
  51. [58]
    R. C. Vaughan, On a problem of Erdős, Straus and Schinzel, Mathematica. 17 (1970), 193–198.zbMATHMathSciNetGoogle Scholar
  52. [59]
    M. D. Vose, Egyptian fractions, Bull. London Math. Spc., 17, (1985), 21–24.CrossRefzbMATHMathSciNetGoogle Scholar
  53. [60]
    W. A. Webb, Rationals not expressible as the sum of three unit fractions, Elemente der Math. 29, (1974), 1–6.zbMATHGoogle Scholar
  54. [61]
    W. A. Webb, On 4/n = 1/x + 1/y + 1/z, Proc. Amer. Math. Soc. 25 (1970), 578–584.zbMATHMathSciNetGoogle Scholar
  55. [64]
    H. S. Wilf, Reciprocal bases for the integers, Bull. Amer. Math. Soc. 67 (1961), p. 456.CrossRefMathSciNetGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag 2013

Authors and Affiliations

  • Ronald L. Graham
    • 1
  1. 1.Department of Computer Science and EngineeringUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations