Advertisement

The History of Degenerate (Bipartite) Extremal Graph Problems

  • Zoltán Füredi
  • Miklós Simonovits
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 25)

Abstract

This paper is a survey on Extremal Graph Theory, primarily focusing on the case when one of the excluded graphs is bipartite. On one hand we give an introduction to this field and also describe many important results, methods, problems, and constructions.

Keywords

Bipartite Graph Random Graph Extremal Problem Discrete Math Cayley Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [4]
    M. Ajtai, J. Komlós, and E. Szemerédi: On a conjecture of Loebl, in Graph theory, Combinatorics, and Algorithms, Vol. 1, 2 (Kalamazoo, MI, 1992), Wiley-Intersci. Publ., pp. 1135–1146. Wiley, New York, 1995.Google Scholar
  2. [6]
    N. Alon: Eigenvalues and expanders, Combinatorica 6 (1983), 83–96.Google Scholar
  3. [7]
    N. Alon: Tools from higher algebra, in: „Handbook of Combinatorics“, R. L. Graham, M. Grötschel and L. Lovász, eds, North Holland (1995), Chapter 32, pp. 1749–1783.Google Scholar
  4. [8]
    N. Alon, S. Hoory, and N. Linial: The Moore bound for irregular graphs, Graphs Combin. 18 (2002), no. 1, 53–57.zbMATHMathSciNetGoogle Scholar
  5. [9]
    N. Alon, M. Krivelevich, and B. Sudakov: Turán numbers of bipartite graphs and related Ramsey-type questions, Combin. Probab. Comput. 12 (2003), no. 5–6, 477–494.zbMATHMathSciNetGoogle Scholar
  6. [10]
    N. Alon and V. D. Milman: λ1-isoperimetric inequalities for graphs and superconcentrators, J. Combin. Theory Ser. B 38 (1985), 73–88.zbMATHMathSciNetGoogle Scholar
  7. [11]
    N. Alon, L. Rónyai, and T. Szabó: Norm-graphs: variations and applications, J. Combin. Theory Ser. B 76 (1999), 280–290.zbMATHMathSciNetGoogle Scholar
  8. [12]
    L. Babai and B. Guiduli: Spectral extrema for graphs: the Zarankiewicz problem, Electronic J. Combin. 15 (2009), R123.MathSciNetGoogle Scholar
  9. [13]
    R. Baer: Polarities in finite projective planes, Bull. Amer. Math. Soc. 52 (1946), 77–93.zbMATHMathSciNetGoogle Scholar
  10. [14]
    C. Balbuena, P. García-Vázquez, X. Marcote, and J. C. Valenzuela: New results on the Zarankiewicz problem, Discrete Math. 307 (2007), no. 17–18, 2322–2327.zbMATHMathSciNetGoogle Scholar
  11. [15]
    C. Balbuena, P. García-Vázquez, X. Marcote, and J. C. Valenzuela: Counterexample to a conjecture of Győri on C 2l-free bipartite graphs, Discrete Math. 307 (2007), no. 6, 748–749.zbMATHMathSciNetGoogle Scholar
  12. [16]
    C. Balbuena, P. García-Vázquez, X. Marcote, and J. C. Valenzuela: Extremal K(s; t)-free bipartite graphs, Discrete Math. Theor. Comput. Sci. 10 (2008), no. 3, 35–48.zbMATHMathSciNetGoogle Scholar
  13. [17]
    P. N. Balister, B. Bollobás, O. M. Riordan, and R. H. Schelp: Graphs with large maximum degree containing no odd cycles of a given length, J. Combin. Theory B 87 (2003), 366–373.zbMATHGoogle Scholar
  14. [18]
    P. N. Balister, E. Győri, J. Lehel, and R. H. Schelp: Connected graphs without long paths, Discrete Math 308 (2008), no. 19, 4487–4494.zbMATHMathSciNetGoogle Scholar
  15. [19]
    S. Ball and V. Pepe: Asymptotic improvements to the lower bound of certain bipartite Turán numbers, Combin. Probab. Comput. 21 (2012), no. 3, 323–329.zbMATHMathSciNetGoogle Scholar
  16. [20]
    J. Beck and J. Spencer: Unit distances, J. Combin. Theory Ser. A 37 (1984), 231–238.zbMATHMathSciNetGoogle Scholar
  17. [21]
    F. Behrend: On sets of integers which contain no three terms in arithmetic progression, Proc. Nat. Acad. Sci. US. 32 (1956), 331–332.MathSciNetGoogle Scholar
  18. [22]
    C. T. Benson: Minimal regular graphs of girths eight and twelve, Canad. J. Math. 18 (1966), 1091–1094.zbMATHMathSciNetGoogle Scholar
  19. [23]
    D. Bienstock and E. Győri: An extremal problem on sparse 0-1 matrices, SIAM J. Discrete Math. 4 (1991), no. 1, 17–27.zbMATHMathSciNetGoogle Scholar
  20. [24]
    P. Blagojević, B. Bukh, and R. Karasev: Turán numbers for Ks,t-free graphs: topological obstructions and algebraic constructions, arXiv:1108.5254v3, 3 Jun 2012.Google Scholar
  21. [25]
    B. Bollobás: Cycles modulo k, Bull. London Math. Soc. 9 (1977), no. 1, 97–98.zbMATHMathSciNetGoogle Scholar
  22. [26]
    B. Bollobás: Extremal Graph Theory, Academic Press, London, 1978.zbMATHGoogle Scholar
  23. [27]
    B. Bollobás: Random Graphs, Academic Press, London, 1985.zbMATHGoogle Scholar
  24. [28]
    B. Bollobás: Extremal graph theory, in: R. L. Graham, M. Grötschel, and L. Lovász (Eds.), Handbook of Combinatorics, Elsevier Science, Amsterdam, 1995, pp. 1231–1292.Google Scholar
  25. [29]
    B. Bollobás and A. Thomason: Proof of a conjecture of Mader, Erdős and Hajnal on topological subgraphs, European J. Combin 19 (1998), 883–887.zbMATHMathSciNetGoogle Scholar
  26. [30]
    J. A. Bondy: Basic graph theory: paths and circuits, Handbook of Combinatorics, Vol. I., pp. 3–110, Elsevier, Amsterdam, 1995.Google Scholar
  27. [31]
    J. A. Bondy: Extremal problems of Paul Erdős on circuits in graphs, Paul Erdős and his mathematics, II (Budapest, 1999), 135–156, Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Budapest, 2002.Google Scholar
  28. [32]
    J. A. Bondy and M. Simonovits: Cycles or even length in graphs, J. Combin. Theory Ser. B 16 (1974), 97–105.zbMATHMathSciNetGoogle Scholar
  29. [33]
    J. A. Bondy and A. Vince: Cycles in a graph whose lengths differ by one or two, J. Graph Theory 27 (1998), 11–15.zbMATHMathSciNetGoogle Scholar
  30. [34]
    S. Brandt and E. Dobson: The Erdős-Sós conjecture for graphs of girth 5, Selected papers in honour of Paul Erdős on the occasion of his 80th birthday (Keszthely, 1993), Discrete Math. 150 (1996), no. 1–3. 411–414.zbMATHMathSciNetGoogle Scholar
  31. [35]
    P. Brass: Erdős distance problems in normed spaces, Comput. Geom. 6 (1996), no. 4, 195–214.zbMATHMathSciNetGoogle Scholar
  32. [36]
    W. G. Brown: On graphs that do not contain a Thomsen graph, Canad. Math. Bull. 9 (1966), 281–285.zbMATHMathSciNetGoogle Scholar
  33. [37]
    W. G. Brown: On the non-existence of a type of regular graphs of girth 5, Canad. J. Math. 19 (1967), 644–648.zbMATHMathSciNetGoogle Scholar
  34. [38]
    W. G. Brown and J. W. Moon: Sur les ensembles de sommets indépendants dans les graphes chromatiques minimaux, (French), Canad. J. Math. 21 (1969), 274–278.zbMATHMathSciNetGoogle Scholar
  35. [39]
    W. G. Brown, P. Erdős and V. T. Sós: On the existence of triangulated spheres in 3-graphs, and related problems, Period Math. Hungar. 3 (1973), 221–228.zbMATHMathSciNetGoogle Scholar
  36. [40]
    W. G. Brown, P. Erdős and V. T. Sós: Some extremal problems on r-graphs, New Directions in the Theory of Graphs (ed. F. Harary), Academic Press, New York, 1973, pp. 53–63.Google Scholar
  37. [41]
    W. G. Brown and M. Simonovits: Digraph extremal problems, hypergraph extremal problems, and the densities of graph structures, Discrete Math. 48 (1984), no. 2–3, 147–162.zbMATHMathSciNetGoogle Scholar
  38. [42]
    W. G. Brown, and M. Simonovits: Extremal multigraph and digraph problems, Paul Erdős and his mathematics, II (Budapest, 1999), pp. 157–203, Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Budapest, 2002.Google Scholar
  39. [43]
    L. Caccetta and K. Vijayan: Long cycles in subgraphs with prescribed minimum degree, Discrete Math. 97 (1991), no. 1–3, 69–81.zbMATHMathSciNetGoogle Scholar
  40. [44]
    D. de Caen and L. A. Székely: The maximum size of 4-and 6-cycle free bipartite graphs on m, n vertices, Sets, Graphs and Numbers (Budapest, 1991), Colloquium Mathematical Society János Bolyai, vol. 60, North-Holland, Amsterdam, 1992, pp. 135–142.Google Scholar
  41. [45]
    R. Canham: A theorem on arrangements of lines in the plane, Israel J. Math. 7 (1969), 393–397.zbMATHMathSciNetGoogle Scholar
  42. [46]
    F. Chung: Subgraphs of a hypercube containing no small even cycles, J. Graph Theory 16 (1992), 273–286.zbMATHMathSciNetGoogle Scholar
  43. [47]
    F. R. K. Chung and R. L. Graham: Erdős on Graphs: His Legacy of Unsolved Problems, A. K. Peters Ltd., Wellesley, MA, 1998.Google Scholar
  44. [48]
    C. R. J. Clapham, A. Flockart, and J. Sheehan: Graphs without four-cycles, J. Graph Theory 13 (1989), 29–47.zbMATHMathSciNetGoogle Scholar
  45. [49]
    K. Clarkson, H. Edelsbrunner, L. J. Guibas, M. Sharir, and E. Welzl: Combinatorial complexity bounds for arrangements of curves and spheres, Discrete Comput. Geom. 5 (1990), no. 2, 99–160.zbMATHMathSciNetGoogle Scholar
  46. [50]
    M. Conder: Hexagon-free subgraphs of hypercubes, J. Graph Theory 17 (1993), 477–479.zbMATHMathSciNetGoogle Scholar
  47. [51]
    D. Conlon: An extremal theorem in the hypercube, Electron. J. Combin. 17 (2010), Research Paper 111.Google Scholar
  48. [52]
    D. Conlon, J. Fox, and B. Sudakov: An approximate version of Sidorenko’s conjecture, Geom. Funct. Anal. 20 (2010), no. 6, 1354–1366.zbMATHMathSciNetGoogle Scholar
  49. [54]
    O. Cooley: Proof of the Loebl-Komlós-Sós conjecture for large, dense graphs, Discrete Math. 309 (2009), no. 21, 6190–6228.zbMATHMathSciNetGoogle Scholar
  50. [55]
    K. Čulík: Teilweise Lösung eines verallgemeinerten Problems von K. Zarankiewicz, Ann. Polon. Math. 3 (1956), 165–168.zbMATHMathSciNetGoogle Scholar
  51. [56]
    D. M. Cvetkovič, M. Doob, and H. Sachs: Spectra of Graphs, Academic Press Inc., New York, 1980.Google Scholar
  52. [57]
    G. Damásdi, T. Héger, and T. Szőnyi: The Zarankiewicz problem, cages, and geometries, manuscript 2013.Google Scholar
  53. [58]
    H. Edelsbrunner and P. Hajnal: A lower bound on the number of unit distances between the vertices of a convex polygon, J. Combin. Theory Ser. A 56 (1991), no. 2, 312–316.zbMATHMathSciNetGoogle Scholar
  54. [60]
    P. Erdős: On sequences of integers no one of which divides the product of two others, and some related problems, Mitt. Forschungsinst. Math. u. Mech. Tomsk 2 (1938), 74–82.Google Scholar
  55. [61]
    P. Erdős: Graph theory and probability I, Canad. J. Math. 11 (1959), 34–38.MathSciNetGoogle Scholar
  56. [62]
    P. Erdős: Graph theory and probability II, Canad. J. Math. 13 (1961), 346–352.MathSciNetGoogle Scholar
  57. [63]
    P. Erdős: Extremal problems in graph theory, Proc. Sympos. Smolenice, 1963, pp. 29–36, Publ. House Czechoslovak Acad. Sci., Prague, 1964.Google Scholar
  58. [64]
    P. Erdős: Some applications of probability to graph theory and combinatorial problems, Theory of Graphs and its Applications (Proc. Sympos. Smolenice, 1963), pp. 133–136, Publ. House Czech. Acad. Sci., Prague, 1964.Google Scholar
  59. [65]
    P. Erdős: On some extremal problems in graph theory, Israel J. Math. 3 (1965), 113–116.MathSciNetGoogle Scholar
  60. [66]
    P. Erdős: Some recent results on extremal problems in graph theory, Theory of Graphs (ed P. Rosenstiehl), (Internat. Sympos., Rome, 1966), Gordon and Breach, New York, and Dunod, Paris, 1967, pp. 117–123.Google Scholar
  61. [67]
    P. Erdős: On some new inequalities concerning extremal properties of graphs, Theory of Graphs (P. Erdős and G. Katona, Eds.), Academic Press, Nev. York, 1968, pp. 77–81.Google Scholar
  62. [68]
    P. Erdős: The Art of Counting (ed. J. Spencer), The MIT Press, Cambridge, Mass., 1973.Google Scholar
  63. [69]
    P. Erdős: Problems and results on finite and infinite combinatorial analysis, in Infinite and Finite Sets (Proc. Conf., Keszthely, Hungary, 1973), pp. 403–424, Proc. Colloq. Math. Soc. J. Bolyai 10, Bolyai-North-Holland, 1975.Google Scholar
  64. [70]
    P. Erdős: Some recent progress on extremal problems in graph theory, Congr. Numerantium 14 (1975), 3–14.Google Scholar
  65. [71]
    P. Erdős: Problems and results in combinatorial analysis, Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo II, Atti dei Convegni Lincei, No. 17, pp. 3–17, Accad. Naz. Lincei, Rome, 1976.Google Scholar
  66. [72]
    P. Erdős: Problems and results in graph theory and combinatorial analysis, Graph theory and related topics (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1977), pp. 153–163, Academic Press, New York-London.Google Scholar
  67. [73]
    P. Erdős: On the combinatorial problems which I would most like to see solved, Combinatorica 1 (1981), no. 1, 25–42.MathSciNetGoogle Scholar
  68. [74]
    P. Erdős: On some problems in graph theory, combinatorial analysis and combinatorial number theory, Graph Theory and Combinatorics (Cambridge, 1983), pp. 1–17, Academic Press, London, 1984.Google Scholar
  69. [75]
    P. Erdős: Two problems in extremal graph theory. Graphs Combin. 2 (1986), no. 1, 189–190.MathSciNetGoogle Scholar
  70. [76]
    P. Erdős: On some of my favourite theorems, Combinatorics, Paul Erdős is eighty, Vol. 2 (Keszthely, 1993), 97–132, Bolyai Soc. Math. Stud., 2, János Bolyai Math. Soc., Budapest, 1996.Google Scholar
  71. [77]
    P. Erdős, R. J. Faudree, J. Pach, and J. Spencer: How to make a graph bipartite, J. Combin. Theory Ser. B 45 (1988), no. 1, 86–98.MathSciNetGoogle Scholar
  72. [78]
    P. Erdős, R. J. Faudree, R. H. Schelp, and M. Simonovits: An extremal result for paths, Graph theory and its applications: East and West (Jinan, 1986), 155–162 Ann. New York Acad. Sci., 576, New York Acad. Sci., New York, 1989.Google Scholar
  73. [79]
    P. Erdős, Z. Füredi, M. Loebl, and V. T. Sós: Discrepancy of trees, Studia Sci. Math. Hungar. 30 (1995), no. 1–2, 47–57.MathSciNetGoogle Scholar
  74. [80]
    P. Erdős and T. Gallai: On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337–356.MathSciNetGoogle Scholar
  75. [81]
    P. Erdős, E. Győri, and M. Simonovits: How many edges should be deleted to make a triangle-free graph bipartite? Sets, graphs and numbers (Budapest, 1991), pp. 239–263, Colloq. Math. Soc. János Bolyai, 60, North-Holland, Amsterdam, 1992.Google Scholar
  76. [82]
    P. Erdős, G. Harcos, and J. Pach: Popular distances in 3-space, Discrete Math. 200 (1999), no. 1–3, 95–99.MathSciNetGoogle Scholar
  77. [83]
    P. Erdős and L. Moser: Problem 11, Canad. Math. Bull. 2 (1959), 43.Google Scholar
  78. [84]
    P. Erdős and A. Rényi: On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960), 17–61.Google Scholar
  79. [85]
    P. Erdős and A. Rényi: On a problem in the theory of graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 (1962), 623–641.Google Scholar
  80. [86]
    P. Erdős, A. Rényi, and Vera T. Sós: On a problem of graph theory, Stud Sci. Math. Hung. 1 (1966), 215–235.Google Scholar
  81. [87]
    P. Erdős and H. Sachs: Reguläre Graphen gegebener Taillenweite mit minimaler Knotenzahl (in German), Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 12 (1963), 251–257.MathSciNetGoogle Scholar
  82. [88]
    P. Erdős, A. Sárközy, and V. T. Sós: On product representation of powers, I, European J. Combin. 16 (1995), 567–588.Google Scholar
  83. [89]
    P. Erdős and M. Simonovits: A limit theorem in graph theory, Studia Sci. Math. Hungar. 1 (1966), 51–57.MathSciNetGoogle Scholar
  84. [90]
    P. Erdős and M. Simonovits: Some extremal problems in graph theory, Combinatorial Theory and Its Applications, I. (Proc. Colloq. Balatonfüred, 1969), North Holland, Amsterdam, 1970, pp. 377–390.Google Scholar
  85. [91]
    P. Erdős and M. Simonovits: An extremal graph problem, Acta Math. Acad. Sci. Hungar. 22 (1971/72), 275–282.MathSciNetGoogle Scholar
  86. [92]
    P. Erdős and M. Simonovits: Cube-supersaturated graphs and related problems, Progress in Graph Theory (Waterloo, Ont., 1982), pp. 203–218, Academic Press, Toronto, Ont., 1984.Google Scholar
  87. [93]
    P. Erdős and M. Simonovits: Compactness results in extremal graph theory, Combinatorica 2 (1982), no. 3, 275–288.MathSciNetGoogle Scholar
  88. [94]
    P. Erdős and M. Simonovits: Supersaturated graphs and hypergraphs, Combinatorica 3 (1983), 181–192.MathSciNetGoogle Scholar
  89. [95]
    P. Erdős and A. M. Stone: On the structure of linear graphs, Bull. Amer. Math. Soc 52 (1946), 1087–1091.MathSciNetGoogle Scholar
  90. [96]
    G. Fan: Distribution of cycle lengths in graphs, J. Combin. Theory Ser. B 84 (2002), 187–202.zbMATHMathSciNetGoogle Scholar
  91. [97]
    G. Fan, Xuezheng Lv, and Pei Wang: Cycles in 2-connected graphs, J. Combin. Theory Ser. B 92 (2004), no. 2, 379–394.zbMATHMathSciNetGoogle Scholar
  92. [98]
    R. J. Faudree and R. H. Schelp: Path Ramsey numbers in multicolorings, J. Combin. Theory Ser. B 19 (1975), no. 2, 150–160.zbMATHMathSciNetGoogle Scholar
  93. [99]
    R. J. Faudree and M. Simonovits: On a class of degenerate extremal graph problems, Combinatorica 3 (1983), 83–93.zbMATHMathSciNetGoogle Scholar
  94. [101]
    J. Fox and B. Sudakov: Dependent random choice, Random Structures Algorithms 38 (2011), no. 1–2, 68–99.zbMATHMathSciNetGoogle Scholar
  95. [103]
    Z. Füredi: Graphs without quadrilaterals, J. Combin. Theory Ser. B 34 (1983), 187–190.zbMATHMathSciNetGoogle Scholar
  96. [104]
    Z. Füredi: Quadrilateral-free graphs with maximum number of edges, preprint 1988, http://www.math.uiuc.edu/~z-furedi/PUBS/furedi C4from1988.pdfGoogle Scholar
  97. [105]
    Z. Füredi: Graphs of diameter 3 with the minimum number of edges, Graphs Combin. 6 (1990), no. 4, 333–337.zbMATHMathSciNetGoogle Scholar
  98. [106]
    Z. Füredi: The maximum number of unit distances in a convex n-gon, J. Combin. Theory Ser. A 55 (1990), no. 2, 316–320.zbMATHMathSciNetGoogle Scholar
  99. [107]
    Z. Füredi: On a Turán type problem of Erdős, Combinatorica 11 (1991), 75–79.zbMATHMathSciNetGoogle Scholar
  100. [108]
    Z. Füredi: Turán type problems, in Surveys in Combinatorics, London Math. Soc. Lecture Note Ser. 166, Cambridge University Press, Cambridge, UK, 1991, pp. 253–300.Google Scholar
  101. [109]
    Z. Füredi: The maximum number of edges in a minimal graph of diameter 2, J. Graph Theory 16 (1992), no. 1, 81–98.zbMATHMathSciNetGoogle Scholar
  102. [110]
    Z. Füredi: Extremal hypergraphs and combinatorial geometry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pp. 1343–1352, Birkhäuser, Basel, 1995.Google Scholar
  103. [111]
    Z. Füredi: On the number of edges of quadrilateral-free graphs, J. Combin. Theory Ser. B 68 (1996), 1–6.zbMATHMathSciNetGoogle Scholar
  104. [112]
    Z. Füredi: An upper bound on Zarankiewicz problem, Combin. Probab. Comput. 5 (1996), no. 1, 29–33.zbMATHMathSciNetGoogle Scholar
  105. [113]
    Z. Füredi: New asymptotics for bipartite Turán numbers, J. Combin. Theory Ser. A 75 (1996), no. 1, 141–144.zbMATHMathSciNetGoogle Scholar
  106. [116]
    Z. Füredi and Peter Hajnal: Davenport-Schinzel theory of matrices, Discrete Math. 103 (1992), 231–251.Google Scholar
  107. [117]
    Z. Füredi, A. Naor, and J. Verstraëte: On the Turán number for the hexagon, Adv. Math. 203 (2006), no. 2, 476–496.zbMATHMathSciNetGoogle Scholar
  108. [118]
    Z. Füredi and L. Özkahya: On even-cycle-free subgraphs of the hypercube, J. Combin. Theory Ser. A 118 (2011), 1816–1819.zbMATHMathSciNetGoogle Scholar
  109. [119]
    Z. Füredi, O. Pikhurko, and M. Simonovits: The Turán density of the hypergraph {abc; ade; bde; cde}, Electronic J. Combin. 10 (2003), R18.Google Scholar
  110. [120]
    Z. Füredi and M. Simonovits: Triple systems not containing a Fano configuration, Combin. Probab. Comput. 14 (2005), no. 4, 467–484.zbMATHMathSciNetGoogle Scholar
  111. [121]
    Z. Füredi and D. West: Ramsey theory and bandwidth of graphs, Graphs and Combin. 17 (2001), 463–471.zbMATHMathSciNetGoogle Scholar
  112. [122]
    D. K. Garnick, Y. H. H. Kwong, and F. Lazebnik: Extremal graphs without threecycles or four-cycles, J. Graph Theory 17 (1993), no. 5, 633–645.zbMATHMathSciNetGoogle Scholar
  113. [123]
    D. K. Garnick, and N. A. Nieuwejaar, Non-isomorphic extremal graphs without three-cycles and four-cycles, J. Combin. Math. Combin. Comput. 12 (1992), 33–56.zbMATHMathSciNetGoogle Scholar
  114. [124]
    A. Grzesik: On the maximum number of five-cycles in a triangle-free graph, J. Combin. Theory Ser. B 102 (2012), no. 5, 1061–1066.zbMATHMathSciNetGoogle Scholar
  115. [125]
    J. R. Griggs and Chih-Chang Ho: On the half-half case of the Zarankiewicz problem, Discrete Math. 249 (2002), no. 1–3, 95–104.zbMATHMathSciNetGoogle Scholar
  116. [126]
    J. Griggs, J. Ouyang: (0; 1)-matrices with no half-half submatrix of ones, European J. Combin. 18 (1997), 751–761.zbMATHMathSciNetGoogle Scholar
  117. [127]
    J. R. Griggs, M. Simonovits, and George Rubin Thomas: Extremal graphs with bounded densities of small subgraphs, J. Graph Theory 29 (1998), no. 3, 185–207.zbMATHMathSciNetGoogle Scholar
  118. [128]
    R. K. Guy: A problem of Zarankiewicz, in: Theory of Graphs (Proc. Colloq., Tihany, 1966), pp. 119–150. Academic Press, New York 1968.Google Scholar
  119. [129]
    R. K. Guy and S. Znám: A problem of Zarankiewicz, Recent Progress in Combinatorics (Proc. Third Waterloo Conf. on Combinatorics, 1968), pp. 237–243. Academic Press, New York 1969.Google Scholar
  120. [130]
    A. Gyárfás: Graphs with k odd cycle lengths, Discrete Math. 103 (1992), 41–48.zbMATHMathSciNetGoogle Scholar
  121. [131]
    A. Gyárfás, J. Komlós, and E. Szemerédi: On the distribution of cycle lengths in graphs, J. Graph Theory 8 (1984), 441–462.zbMATHMathSciNetGoogle Scholar
  122. [132]
    A. Gyárfás, C. C. Rousseau, and R. H. Schelp: An extremal problem for paths in bipartite graphs, J. Graph Theory 8 (1984), 83–95.zbMATHMathSciNetGoogle Scholar
  123. [133]
    E. Győri: On the number of C 5’s in a triangle-free graph, Combinatorica 9 (1989), 101–102.MathSciNetGoogle Scholar
  124. [134]
    E. Győri: C 6-free bipartite graphs and product representation of squares, Graphs Combin. (Marseille, 1995), Discrete Math. 165/166 (1997), 371–375.Google Scholar
  125. [135]
    E. Győri: Triangle-free hypergraphs, Combin. Prob. Comput. 15 (2006), 185–191.Google Scholar
  126. [136]
    E. Győri, B. Rothschild, and A. Ruciński: Every graph is contained in a sparsest possible balanced graph, Math. Proc. Cambridge Philos. Soc. 98 (1985), no. 3, 397–401.MathSciNetGoogle Scholar
  127. [137]
    R. Häggkvist and A. D. Scott: Arithmetic progressions of cycles, Tech. Rep. Mat. Inst. Umeä Univ. 16, (1998).Google Scholar
  128. [139]
    S. Hartman, J. Mycielski, C. Ryll-Nardzevski: Systèmes spéciaux de points à coordonn ées entiéres, Colloq. Math. 3 (1954), 84–85, (Bericht Über di Tagung der Poln Math Gesellschaft, Wroclaw, am 20. September 1951.)Google Scholar
  129. [140]
    H. Hatami: Graph norms and Sidorenko’s conjecture, Israel J. Math. 175 (2010), 125–150.zbMATHMathSciNetGoogle Scholar
  130. [141]
    H. Hatami, J. Hladký, D. Král, S. Norine, and A. Razborov: On the number of pentagons in triangle-free graphs, J. Combin. Theory Ser. A 120 (2013), no. 3, 722–732.zbMATHMathSciNetGoogle Scholar
  131. [142]
    H. Hatami and S. Norine: Undecidability of linear inequalities in graph homomorphism densities, J. Amer. Math. Soc. 24 (2011), no. 2, 547–565.zbMATHMathSciNetGoogle Scholar
  132. [143]
    J. Hladký, J. Komlós, M. Simonovits, M. Stein, and E. Szemerédi: An approximate version of the Loebl-Komlós-Sós Conjecture for sparse graphs, submitted, on arXiv:1211.3050.v1, 2012, Nov 13.Google Scholar
  133. [144]
    J. Hladký and D. Piguet: Loebl-Komlós-Sós Conjecture: dense case, Manuscript (arXiv:0805:4834).Google Scholar
  134. [145]
    M. N. Huxley and H. Iwaniec: Bombieri’s theorem in short intervals, Mathematika 22 (1975), 188–194.zbMATHMathSciNetGoogle Scholar
  135. [146]
    C. Hyltén-Cavallius: On a combinatorial problem, Colloq. Math. 6 (1958), 59–65.zbMATHMathSciNetGoogle Scholar
  136. [147]
    W. Imrich: Explicit construction of graphs without small cycles, Combinatorica 4 (1984), 53–59.zbMATHMathSciNetGoogle Scholar
  137. [148]
    C. Jagger, P. Šťovíček, and A. Thomason: Multiplicities of subgraphs, Combinatorica 16 (1996), no. 1, 123–141.zbMATHMathSciNetGoogle Scholar
  138. [149]
    S. Janson, T. Luczak, and A. Ruciński: Random Graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000. xii+333 pp.Google Scholar
  139. [150]
    T. Jiang: Compact topological minors in graphs, J. Graph Theory 67 (2011), 139–152.zbMATHMathSciNetGoogle Scholar
  140. [151]
    T. Jiang and R. Seiver: Turán numbers of subdivided graphs, SIAM J. Discrete Math. 26 (2012), no. 3, 1238–1255.zbMATHMathSciNetGoogle Scholar
  141. [152]
    S. Józsa and E. Szemerédi: The number of unit distance on the plane, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. II, pp. 939–950. Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland, Amsterdam, 1975.Google Scholar
  142. [154]
    Gy. Katona, T. Nemetz, and M. Simonovits: On a problem of Turán in the theory of graphs, Mat. Lapok 15 (1964), 228–238.zbMATHMathSciNetGoogle Scholar
  143. [155]
    P. Keevash: Hypergraph Turan problems, Surveys in Combinatorics, Cambridge University Press, 2011, 83–140.Google Scholar
  144. [156]
    P. Keevash and B. Sudakov: The Turan number of the Fano plane, Combinatorica 25 (2005), 561–574.zbMATHMathSciNetGoogle Scholar
  145. [158]
    M. Klazar: The Füredi-Hajnal conjecture implies the Stanley-Wilf conjecture, in: D. Krob, A. A. Mikhalev, A. V. Mikhalev (Eds.), Formal Power Series and Algebraic Combinatorics, Springer, Berlin, 2000, pp. 250–255.Google Scholar
  146. [159]
    J. Kollár, L. Rónyai, and T. Szabó: Norm graphs and bipartite Turán numbers, Combinatorica 16 (1996), 399–406.zbMATHMathSciNetGoogle Scholar
  147. [160]
    J. Komlós and E. Szemerédi: Topological cliques in graphs, Combin. Probab. Comput. 3 (1994), no. 2, 247–256.zbMATHMathSciNetGoogle Scholar
  148. [161]
    J. Komlós and E. Szemerédi: Topological cliques in graphs II, Combin. Probab. Comput. 5 (1996), 79–90.zbMATHMathSciNetGoogle Scholar
  149. [162]
    G. N. Kopylov: Maximal paths and cycles in a graph, Dokl. Akad. Nauk SSSR 234 (1977), no. 1, 19–21. (English translation: Soviet Math. Dokl. 18 (1977), no. 3, 593–596.)MathSciNetGoogle Scholar
  150. [163]
    A. Kostochka and L. Pyber: Small topological complete subgraphs of “dense” graphs, Combinatorica 8 (1988), 83–86.zbMATHMathSciNetGoogle Scholar
  151. [164]
    T. Kővári, V. T. Sós, and P. Turán: On a problem of K. Zarankiewicz, Colloq. Math. 3 (1954), 50–57.Google Scholar
  152. [165]
    D. Kühn and D. Osthus: Four-cycles in graphs without a given even cycle, J. Graph Theory 48 (2005), 147–156.zbMATHMathSciNetGoogle Scholar
  153. [166]
    T. Lam and J. Verstraëte: A note on graphs without short even cycles, Electron. J. Combin. 12 (2005), Note 5, 6 pp.Google Scholar
  154. [167]
    F. Lazebnik and D. Mubayi: New lower bounds for Ramsey numbers of graphs and hypergraphs, Adv. in Appl. Math. 28 (2002), no. 3–4, 544–559.zbMATHMathSciNetGoogle Scholar
  155. [168]
    F. Lazebnik and V. A. Ustimenko, New examples of graphs without small cycles and of large size, European J. Combin. 14 (1993), no. 5, 445–460.zbMATHMathSciNetGoogle Scholar
  156. [169]
    F. Lazebnik, V. A. Ustimenko, and A. J. Woldar: Properties of certain families of 2k-cycle-free graphs, J. Combin. Theory Ser. B 60 (1994), no. 2, 293–298.zbMATHMathSciNetGoogle Scholar
  157. [170]
    F. Lazebnik, V. A. Ustimenko, and A. J. Woldar: A new series of dense graphs of high girth, Bull. Amer. Math. Soc. 32 (1995), no. 1, 73–79.zbMATHMathSciNetGoogle Scholar
  158. [171]
    F. Lazebnik, V. A. Ustimenko, and A. J. Woldar, Polarities and 2k-cycle-free graphs, Discrete Math. 197/198 (1999), 503–513.MathSciNetGoogle Scholar
  159. [172]
    F. Lazebnik and A. J.Woldar: General properties of some families of graphs defined by systems of equations, J. Graph Theory 38 (2001), no. 2, 65–86.zbMATHMathSciNetGoogle Scholar
  160. [175]
    L. Lovász: Independent sets in critical chromatic graphs, Studia Sci. Math. Hungar. 8 (1973), 165–168.MathSciNetGoogle Scholar
  161. [176]
    L. Lovász: Combinatorial Problems and Exercises, 2nd Ed., North-Holland, Amsterdam, 1993.zbMATHGoogle Scholar
  162. [178]
    L. Lovász and M. Simonovits: On the number of complete subgraphs of a graph II, Studies in Pure Mathematics, pp. 459–495, (dedicated to the memory of P. Turán), Akadémiai Kiadó and Birkhäuser Verlag 1982.Google Scholar
  163. [179]
    A. A. Razborov: Flag algebras, J. Symbolic Logic 72 (2007), no. 4, 1239–1282.zbMATHMathSciNetGoogle Scholar
  164. [181]
    A. Lubotzky, R. Phillips, and P. Sarnak: Ramanujan graphs, Combinatorica 8 (1988), no. 3, 261–277.zbMATHMathSciNetGoogle Scholar
  165. [182]
    A. McLennan: The Erdős-Sós conjecture for trees of diameter four, J. Graph Theory 49 (2005), no. 4, 291–301.zbMATHMathSciNetGoogle Scholar
  166. [183]
    W. Mader: Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math. Ann. 174 (1967), 265–268.zbMATHMathSciNetGoogle Scholar
  167. [184]
    W. Mader: Topological subgraphs in graphs of large girth, Combinatorica 18 (1998), no. 3, 405–412.zbMATHMathSciNetGoogle Scholar
  168. [185]
    W. Mader: Topological minors in graphs of minimum degree n, Contemporary trends in discrete mathematics (Štiřín Castle, 1997), 199–211, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 49, Amer. Math. Soc., Providence, RI, 1999.Google Scholar
  169. [186]
    W. Mader: Graphs with 3n — 6 edges not containing a subdivision of K 5, Combinatorica 25 (2005), no. 4, 425–438.zbMATHMathSciNetGoogle Scholar
  170. [187]
    A. Marcus and G. Tardos: Excluded permutation matrices and the Stanley-Wilf conjecture, J. Combin. Theory Ser. A 107 (2004), no. 1, 153–160.zbMATHMathSciNetGoogle Scholar
  171. [188]
    G. A. Margulis: Explicit construction of graphs without short cycles and low density codes, Combinatorica 2 (1982), 71–78.zbMATHMathSciNetGoogle Scholar
  172. [189]
    G. A. Margulis: Arithmetic groups and graphs without short cycles, in: 6th Int. Symp. on Information Theory, Tashkent, Abstracts 1, 1984, pp. 123–125 (in Russian).Google Scholar
  173. [190]
    G. A. Margulis: Explicit group-theoretical construction of combinatorial schemes and their application to the design of expanders and concentrators, J. Problems of Inform. Trans. 24 (1988), 39–46; translation from Problemy Peredachi Informatsii 24 (January-March 1988), 51–60.zbMATHMathSciNetGoogle Scholar
  174. [191]
    G. Megyesi and E. Szabó: On the tacnodes of configurations of conics in the projective plane, Math. Ann. 305 (1996), no. 4, 693–703.zbMATHMathSciNetGoogle Scholar
  175. [192]
    M. Molloy and B. Reed: Graph Colouring and the Probabilistic Method, Algorithms and Combinatorics, 23. Springer-Verlag, Berlin, 2002, xiv+326 pp.Google Scholar
  176. [193]
    B. Montágh: Unavoidable substructures, PHD Thesis, University of Memphis, May 2005.Google Scholar
  177. [194]
    M. Mörs: A new result on the problem of Zarankiewicz, J. Combin. Theory Ser. A 31 (1981), no. 2, 126–130.zbMATHMathSciNetGoogle Scholar
  178. [195]
    D. Mubayi and Gy. Turán: Finding bipartite subgraphs efficiently, Inform. Process. Lett. 110 (2010), no. 5, 174–177.zbMATHMathSciNetGoogle Scholar
  179. [196]
    Z. L. Nagy: A multipartite version of the Turán problem — density conditions and eigenvalues, Electron. J. Combin. 18 (2011), no. 1, Paper 46, 15 pp.Google Scholar
  180. [197]
    V. Nikiforov: Bounds on graph eigenvalues II, Linear Algebra Appl. 427 (2007), 183–189.zbMATHMathSciNetGoogle Scholar
  181. [198]
    V. Nikiforov: A contribution to the Zarankiewicz problem, Linear Algebra Appl. 432 (2010), no. 6, 1405–1411.zbMATHMathSciNetGoogle Scholar
  182. [199]
    J. Pach and P. K. Agarwal: Combinatorial Geometry, Wiley-Interscience, New York, 1995. xiv+354 pp.zbMATHGoogle Scholar
  183. [201]
    D. Piguet and M. J. Stein: Loebl-Komlós-Sós conjecture for trees of diameter 5, Electron. J. Combin., 15 (2008), Research Paper 106, 11 pp.Google Scholar
  184. [202]
    D. Piguet and M. J. Stein: An approximate version of the Loebl-Komlós-Sós conjecture, J. Combin. Theory Ser. B 102 (2012), no. 1, 102–125.zbMATHMathSciNetGoogle Scholar
  185. [203]
    O. Pikhurko: A note on the Turán Function of even cycles, Proc. Amer. Math Soc. 140 (2012), 3687–3992.zbMATHMathSciNetGoogle Scholar
  186. [204]
    R. Pinchasi and M. Sharir: On graphs that do not contain the cube and related problems, Combinatorica 25 (2005), no. 5, 615–623.zbMATHMathSciNetGoogle Scholar
  187. [206]
    I. Reiman: Über ein Problem von K. Zarankiewicz, Acta Math. Acad. Sci. Hungar. 9 (1958), no. 3–4, 269–273.zbMATHMathSciNetGoogle Scholar
  188. [207]
    I. Reiman: An extremal problem in graph theory, (Hungarian). Mat. Lapok 12 (1961), 44–53.zbMATHMathSciNetGoogle Scholar
  189. [208]
    A. Rényi: Selected Papers of Alfréd Rényi, Akadémiai Kiadó, 1976 (ed. Paul Turán).Google Scholar
  190. [211]
    J.-F. Saclè and M. Woźniak: A note on the Erdős-Sós conjecture for graphs without C 4, J. Combin. Theory Ser. B 70 (1997), no. 2, 367–372.zbMATHMathSciNetGoogle Scholar
  191. [212]
    G. N. Sárközy: Cycles in bipartite graphs and an application in number theory, J. Graph Theory, 19 (1995), 323–331.zbMATHMathSciNetGoogle Scholar
  192. [213]
    A. Scott: Szemerédi’s regularity lemma for matrices and sparse graphs, Combin. Probab. Comput. 20 (2011), no. 3, 455–466.zbMATHMathSciNetGoogle Scholar
  193. [214]
    Jian Shen: On two Turán numbers, J. Graph Theory 51 (2006), 244–250.zbMATHMathSciNetGoogle Scholar
  194. [215]
    A. F. Sidorenko: Asymptotic solution for a new class of forbidden r-graphs, Combinatorica 9 (1989), no. 2, 207–215.zbMATHMathSciNetGoogle Scholar
  195. [216]
    A. Sidorenko: A correlation inequality for bipartite graphs, Graphs Combin. 9 (1993), no. 2, 201–204.zbMATHMathSciNetGoogle Scholar
  196. [217]
    A. F. Sidorenko: What do we know and what we do not know about Turán Numbers, Graphs Combin. 11 (1995), no. 2, 179–199.zbMATHMathSciNetGoogle Scholar
  197. [218]
    M. Simonovits: A method for solving extremal problems in graph theory, Theory of Graphs, Proc. Colloq. Tihany, (1966), (P. Erdős and G. Katona, Eds.), pp. 279–319, Acad. Press, New York, 1968.Google Scholar
  198. [219]
    M. Simonovits: On colour-critical graphs, Studia Sci. Math. Hungar. 7 (1972), 67–81.zbMATHMathSciNetGoogle Scholar
  199. [220]
    M. Simonovits: Note on a hypergraph extremal problem, Hypergraph Seminar, Columbus Ohio USA, 1972, (C. Berge and D. K. Ray-Chaudhuri, Eds.), Lecture Notes in Mathematics 411, pp. 147–151, Springer Verlag, 1974.Google Scholar
  200. [221]
    M. Simonovits: Extremal graph problems with symmetrical extremal graphs, additional chromatic conditions, Discrete Math. 7 (1974), 349–376.zbMATHMathSciNetGoogle Scholar
  201. [222]
    M. Simonovits: On Paul Turán’s influence on graph theory, J. Graph Theory 1 (1977), no. 2, 102–116.zbMATHMathSciNetGoogle Scholar
  202. [223]
    M. Simonovits: Extremal graph problems and graph products, Studies in Pure Mathematics, pp. 669–680, (dedicated to the memory of P. Turán), Akadémiai Kiadó and Birkhäuser Verlag 1982.Google Scholar
  203. [224]
    M. Simonovits: Extremal graph theory, in: L. W. Beineke, R. J. Wilson (Eds.), Selected Topics in Graph Theory II., pp. 161–200, Academic Press, London, 1983.Google Scholar
  204. [225]
    M. Simonovits: Extremal graph problems, degenerate extremal problems and supersaturated graphs, Progress in graph Theory, (Bondy and Murty, Eds.), pp. 419–438, Academic Press, 1984.Google Scholar
  205. [226]
    M. Simonovits: How to solve a Turán type extremal graph problem? (linear decomposition), Contemporary trends in discrete mathematics (Stirin Castle, 1997), pp. 283–305, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 49, Amer. Math. Soc., Providence, RI, 1999.Google Scholar
  206. [227]
    M. Simonovits: Paul Erdős’ influence on extremal graph theory, The mathematics of Paul Erdős, II., pp. 148–192, Algorithms Combin., 14, Springer, Berlin, 1997.Google Scholar
  207. [230]
    M. Simonovits and V. T. Sós: Ramsey-Turán theory, Combinatorics, graph theory, algorithms and applications, Discrete Math. 229 (2001), no. 1–3, 293–340.zbMATHMathSciNetGoogle Scholar
  208. [231]
    R. R. Singleton: On minimal graphs of maximum even girth, J. Combinatorial Theory 1 (1966), 306–332.zbMATHMathSciNetGoogle Scholar
  209. [232]
    V. T. Sós: Remarks on the connection of graph theory, finite geometry and block designs, Colloquio Internazionale sulle Teorie Combinatorie (Roma, 1973), Tomo II, pp. 223–233, Atti dei Convegni Lincei, No. 17, Accad. Naz. Lincei, Rome, 1976.Google Scholar
  210. [233]
    J. Spencer, E. Szemerédi, and W. T. Trotter: Unit distances in the Euclidean plane, Graph theory and combinatorics (Cambridge, 1983), pp. 293–303, Academic Press, London, 1984.Google Scholar
  211. [234]
    B. Sudakov and J. Verstraëte: Cycle lengths in sparse graphs, Combinatorica 28 (2008), no. 3, 357–372.zbMATHMathSciNetGoogle Scholar
  212. [235]
    E. Szemerédi: Regular partitions of graphs, Problemes Combinatoires et Theorie des Graphes (ed. I.-C. Bermond et al.), pp. 399–401, CNRS, Paris, 1978.Google Scholar
  213. [236]
    G. Tardos: On 0-1 matrices and small excluded submatrices, J. Combin. Th. Ser. A 111 (2005), 266–288.zbMATHMathSciNetGoogle Scholar
  214. [237]
    A. G. Thomason: A disproof of a conjecture of Erdős in Ramsey Theory, J. London Math. Soc. 39 (1989), 246–255.zbMATHMathSciNetGoogle Scholar
  215. [238]
    A. Thomason and P. Wagner: Bounding the size of square-free subgraphs of the hypercube, Discrete Math. 309 (2009), 1730–1735.zbMATHMathSciNetGoogle Scholar
  216. [239]
    C. M. Timmons: Ordered Turán Problems, Lecture no. 1086-05-1067 on the Joint Mathematics Meetings, San Diego, CA, January 9, 2013.Google Scholar
  217. [240]
    B. Toft: Two theorems on critical 4-chromatic graphs, Studia Sci. Math. Hungar. 7 (1972), 83–89.zbMATHMathSciNetGoogle Scholar
  218. [241]
    P. Turán: On a theorem of Hardy-Ramanujan, Journal of London Math Soc. 9 (1934), 274–276.Google Scholar
  219. [242]
    P. Turán: On an extremal problem in graph theory, (Hungarian), Mat. Fiz. Lapok 48 (1941), 436–452.MathSciNetGoogle Scholar
  220. [243]
    P. Turán: On the theory of graphs, Colloq. Math. 3 (1954), 19–30.zbMATHGoogle Scholar
  221. [244]
    P. Turán: A note of welcome, J. Graph Theory 1 (1977), 7–9.Google Scholar
  222. [246]
    J. Verstraëte: On arithmetic progressions of cycle lengths in graphs, Combin. Probab. Comput. 9 (2000), no. 4, 369–373.zbMATHMathSciNetGoogle Scholar
  223. [247]
    R. Wenger: Extremal graphs with no C 4’s, C 6’s, or C 10’s, J. Combin. Theory Ser. B 52 (1991), no. 1, 113–116.zbMATHMathSciNetGoogle Scholar
  224. [248]
    R. M. Wilson: An existence theory for pairwise balanced designs, III. Proof of the existence conjectures, J. Combin. Theory Ser. A 18 (1975), 71–79.zbMATHGoogle Scholar
  225. [249]
    D. R. Woodall: Maximal circuits of graphs I, Acta Math. Acad. Sci. Hungar. 28 (1976), no. 1–2, 77–80.zbMATHMathSciNetGoogle Scholar
  226. [250]
    D. R. Woodall: Maximal circuits of graphs II, Studia Sci. Math. Hungar. 10 (1975), no. 1–2, 103–109.MathSciNetGoogle Scholar
  227. [251]
    M. Woźniak: On the Erdős-Sós conjecture, J. Graph Theory, 21 (1996), no. 2, 229–234.zbMATHMathSciNetGoogle Scholar
  228. [252]
    Y. Yuansheng and P. Rowlinson: On extremal graphs without four-cycles, Utilitas Math. 41 (1992), 204–210.zbMATHMathSciNetGoogle Scholar
  229. [253]
    Y. Yuansheng and P. Rowlinson: On graphs without 6-cycles and related Ramsey numbers, Utilitas Math. 44 (1993), 192–196.zbMATHMathSciNetGoogle Scholar
  230. [254]
    K. Zarankiewicz: Problem 101, Colloquium Mathematicum 2 (1951), p. 301.Google Scholar
  231. [255]
    Yi Zhao: Proof of the (n=2-n=2-n=2) conjecture for large n, Electron. J. Combin. 18 (2011), Paper 27.Google Scholar
  232. [256]
    Š. Znám: On a combinatorical problem of K. Zarankiewicz, Colloq. Math. 11 (1963), 81–84.zbMATHMathSciNetGoogle Scholar
  233. [257]
    Š. Znám: Two improvements of a result concerning a problem of K. Zarankiewicz, Colloq. Math. 13 (1964/1965), 255–258.MathSciNetGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag 2013

Authors and Affiliations

  • Zoltán Füredi
    • 1
  • Miklós Simonovits
    • 1
  1. 1.Alfréd Rényi Institute of MathematicsHungarian Academy of SciencesBudapestHungary

Personalised recommendations