Skip to main content

The Phase Transition in the Erdős-Rényi Random Graph Process

  • Chapter
Erdős Centennial

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 25))

Abstract

We shall review the foundation of the theory of random graphs by Paul Erdős and Alfréd Rényi, and sketch some of the later developments concerning the giant component, including some very recent results.

Research supported in part by NSF grant DMS-0906634 and EU MULTIPLEX grant 317532.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achlioptas, D., R. M. D’Souza and J. Spencer, Explosive percolation in random networks, Science, 323 (2009), 1453–1455.

    MATH  MathSciNet  Google Scholar 

  2. Achlioptas, D. and A. Naor, The two possible values of the chromatic number of a random graph, Ann. of Math. (2), 162 (2005), 1335–1351.

    Google Scholar 

  3. Addario-Berry, L., N. Broutin and C. Goldschmidt, The continuum limit of critical random graphs, Probab. Theory Related Fields, 152 (2012), 367–406.

    MATH  MathSciNet  Google Scholar 

  4. Aiello, W., F. Chung and L. Lu, A random graph model for power law graphs, Experiment. Math., 10 (2001), 53–66.

    MATH  MathSciNet  Google Scholar 

  5. Albert, R. and A.-L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys., 74 (2002), 47–97.

    MATH  Google Scholar 

  6. Albert, R., H. Jeong and A.-L. Barabási, Diameter of the world-wide web, Nature, 401 (1999), 130–131.

    Google Scholar 

  7. Aldous, D., Brownian excursions, critical random graphs and the multiplicative coalescent, Ann. Probab., 25 (1997), 812–854.

    MATH  MathSciNet  Google Scholar 

  8. Alon, N., S. Friedland and G. Kalai, Regular subgraphs of almost regular graphs, J. Combin. Theory Ser. B, 37 (1984), 79–91.

    MATH  MathSciNet  Google Scholar 

  9. Alon, N. and M. Krivelevich, The concentration of the chromatic number of random graphs, Combinatorica, 17 (1997), 303–313.

    MATH  MathSciNet  Google Scholar 

  10. Arratia, R. and E. S. Lander, The distribution of clusters in random graphs, Adv. in Appl. Math., 11 (1990), 36–48.

    MATH  MathSciNet  Google Scholar 

  11. Austin, T. L., R. E. Fagen, W. F. Penney and J. Riordan, The number of components in random linear graphs, Ann. Math. Statist., 30 (1959), 747–754.

    MATH  MathSciNet  Google Scholar 

  12. Babai, L., P. Erdős and S. M. Selkow, Random graph isomorphism, SIAM J. Comput., 9 (1980), 628–635.

    MATH  MathSciNet  Google Scholar 

  13. Barabási, A.-L., Linked: the new science of networks. Perseus Books; First Printing edition (2003), 288 pages.

    Google Scholar 

  14. Barabási, A.-L. and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509–512.

    MathSciNet  Google Scholar 

  15. Barabási, A.-L., R. Albert and H. Jeong, Scale-free characteristics of random networks: the topology of the world-wide web, Physica A, 281 (2000), 69–77.

    Google Scholar 

  16. Barbour, A. D., Poisson convergence and random graphs, Math. Proc. Cambridge Philos. Soc., 92 (1982), 349–359.

    MATH  MathSciNet  Google Scholar 

  17. Barbour, A. D., S. Janson, M. Karoński and A. Ruciński, Small cliques in random graphs, Random Struct. Alg., 1 (1990), 403–434.

    MATH  Google Scholar 

  18. Barbour, A.D., M. Karoński and A. Ruciński, A central limit theorem for decomposable random variables with applications to random graphs, J. Combin. Theory Ser. B, 47 (1989), 125–145.

    MATH  MathSciNet  Google Scholar 

  19. Behrisch, M., A. Coja-Oghlan and M. Kang, The order of the giant component of random hypergraphs, Random Struct. Alg., 36 (2010), 149–184.

    MATH  MathSciNet  Google Scholar 

  20. Bhamidi, S., A. Budhiraja and X. Wang, Bounded-size rules: The barely subcritical regime, preprint (2012) arXiv:1212.5480

    Google Scholar 

  21. Bhamidi, S., A. Budhiraja and X. Wang, The augmented multiplicative coalescent and critical dynamic random graph models, preprint (2012) arXiv:1212.5493

    Google Scholar 

  22. Bhamidi, S., R. van der Hofstad and G. Hooghiemstra, First passage percolation on random graphs with finite mean degrees, Ann. Appl. Probab., 20 (2010), 1907–1965.

    MATH  MathSciNet  Google Scholar 

  23. Bhamidi, S., R. van der Hofstad and J. S. H. van Leeuwaarden, Scaling limits for critical inhomogeneous random graphs with finite third moments, Electron. J. Probab., 15 (2010), 1682–1703.

    MATH  MathSciNet  Google Scholar 

  24. Bohman, T. and A. Frieze, Avoiding a giant component, Random Struct. Alg., 19 (2001), 75–85.

    MATH  MathSciNet  Google Scholar 

  25. Bohman, T. and D. Kravitz, Creating a giant component, Combin. Probab. Comput., 15 (2006), 489–511.

    MATH  MathSciNet  Google Scholar 

  26. Bollobás, B., A probabilistic proof of an asymptotic formula for the number of labelled regular graphs, European J. Combin., 1 (1980), 311–316.

    MATH  MathSciNet  Google Scholar 

  27. Bollobás, B., Threshold functions for small subgraphs, Math. Proc. Cambridge Philos. Soc., 90 (1981), 197–206.

    MATH  MathSciNet  Google Scholar 

  28. Bollobás, B., The evolution of sparse graphs, Graph theory and combinatorics (Cambridge, 1983), Academic Press (1984), 35–57.

    Google Scholar 

  29. Bollobás, B., The evolution of random graphs, Trans. Amer. Math. Soc., 286 (1984), 257–274.

    MATH  MathSciNet  Google Scholar 

  30. Bollobás, B., Paul Erdős and probability theory, Proceedings of the Eighth International Conference “Random Structures and Algorithms” (Poznań, 1997), Random Struct. Alg., 13 (1998), 521–533.

    MATH  Google Scholar 

  31. Bollobás, B., Modern Graph Theory, Graduate Texts in Mathematics 184, Springer-Verlag, New York, 1998, xiv+394 pp.

    MATH  Google Scholar 

  32. Bollobás, B., Random Graphs, Second edition, Cambridge Studies in Advanced Mathematics, 73, Cambridge University Press, Cambridge, 2001, xviii+498 pp.

    MATH  Google Scholar 

  33. Bollobás, B., The Erdős-Rényi theory of random graphs, in Paul Erdős and his mathematics, II (Budapest, 1999), pp. 79–134, Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Budapest, 2002.

    Google Scholar 

  34. Bollobás, B., C. Borgs, T. Chayes and O. Riordan, Directed scale-free graphs. Proc. 14th ACM-SIAM Symposium on Discrete Algorithms, 132–139 (2003).

    Google Scholar 

  35. Bollobás, B., C. Borgs, J. Chayes and O. Riordan, Percolation on dense graph sequences, Annals of Probability, 38 (2010), 150–183.

    MATH  MathSciNet  Google Scholar 

  36. Bollobás, B. and F. R. K. Chung, The diameter of a cycle plus a random matching, SIAM J. Discrete Math., 1 (1988), 328–333.

    MATH  MathSciNet  Google Scholar 

  37. Bollobás, B. and A. M. Frieze, On matchings and Hamiltonian cycles in random graphs, in Random Graphs ′83 (Poznań, 1983), pp. 23–46, North-Holland Math. Stud., 118, North-Holland, Amsterdam, 1985.

    Google Scholar 

  38. Bollobás, B., S. Janson and O. Riordan, The phase transition in the uniformly grown random graph has infinite order, Random Struct. Alg., 26 (2005), 1–36.

    MATH  Google Scholar 

  39. Bollobás, B., S. Janson and O. Riordan, The phase transition in inhomogeneous random graphs, Random Struct. Alg., 31 (2007), 3–122.

    MATH  Google Scholar 

  40. Bollobás, B., S. Janson and O. Riordan, The cut metric, random graphs and branching processes, J. Statist. Phys., 140 (2010), 289–335.

    MATH  Google Scholar 

  41. Bollobás, B., S. Janson and O. Riordan, Sparse random graphs with clustering, Random Struct. Alg., 38 (2011), 269–323.

    MATH  Google Scholar 

  42. Bollobás, B., J. H. Kim and J. Verstraëte, Regular subgraphs of random graphs, Random Struct. Alg., 29 (2006), 1–13.

    MATH  Google Scholar 

  43. Bollobás, B. and O. Riordan, Mathematical results on scale-free random graphs, in Handbook of Graphs and Networks, pp. 1–34, Wiley-VCH, Weinheim, 2003.

    Google Scholar 

  44. Bollobás, B. and O. Riordan, The diameter of a scale-free random graph, Combinatorica, 24 (2004), 5–34.

    MATH  MathSciNet  Google Scholar 

  45. Bollobás, B. and O. Riordan, Random graphs and branching processes, in Handbook of large-scale random networks, Bolyai Soc. Math. Stud., 18, B. Bollobás, R. Kozma and D. Miklós eds (2009), pp. 15–115.

    Google Scholar 

  46. Bollobás, B. and O. Riordan, Metrics for sparse graphs, in Surveys in Combinatorics 2009, London Math. Soc. Lecture Note Series, 365, S. Huczynska, J. D. Mitchell and C. M. Roney-Dougal eds, CUP (2009), pp. 212–287.

    Google Scholar 

  47. Bollobás, B. and O. Riordan, Asymptotic normality of the size of the giant component via a random walk, J. Combin. Theory (B), 102 (2012), 53–61.

    MATH  Google Scholar 

  48. Bollobás, B. and O. Riordan, Asymptotic normality of the size of the giant component in a random hypergraph, Random Struct. Alg., 41 (2012), 441–450.

    MATH  Google Scholar 

  49. Bollobás, B. and O. Riordan, An old approach to the giant component problem, preprint (2012) arXiv:1209.3691

    Google Scholar 

  50. Bollobás, B., O. Riordan, J. Spencer and G. Tusnády, The degree sequence of a scale-free random graph process, Random Struct. Alg., 18 (2001), 279–290.

    MATH  Google Scholar 

  51. Bollobás, B. and A. G. Thomason, Random graphs of small order, in Random Graphs ′83 (Poznań, 1983), North-Holland Math. Studies, 118, North Holland, Amsterdam, 1985, pp. 47–97.

    Google Scholar 

  52. Bollobás, B. and A. Thomason, Threshold functions, Combinatorica, 7 (1987), 35–38.

    MATH  MathSciNet  Google Scholar 

  53. Borgs, C., J. T. Chayes, L. Lovász, V. T. Sós and K. Vesztergombi, Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing, Advances in Math., 219 (2008), 1801–1851.

    MATH  Google Scholar 

  54. Borgs, C., J. T. Chayes, L. Lovász, V. T. Sós and K. Vesztergombi, Convergent sequences of dense graphs II. Multiway cuts and statistical physics, Ann. of Math. (2), 176 (2012), 151–219.

    Google Scholar 

  55. Bourgain, J., J. Kahn, G. Kalai, Y. Katznelson and N. Linial, The influence of variables in product spaces, Israel J. Math., 77 (1992), 55–64.

    MATH  MathSciNet  Google Scholar 

  56. Burtin, Ju. D., Asymptotic estimates of the diameter and the independence and domination numbers of a random graph, Dokl. Akad. Nauk SSSR, 209 (1973), 765–768, transl. in Soviet Math. Dokl., 14 (1973), 497–501.

    MathSciNet  Google Scholar 

  57. Burtin, Ju. D., Extremal metric characteristics of a random graph. I, Teor. Verojatnost. i Primenen., 19 (1974), 740–754.

    MathSciNet  Google Scholar 

  58. Callaway, D. S., J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman and S. H. Strogatz, Are randomly grown graphs really random?, Phys. Rev. E, 64 (2001), 041902.

    Google Scholar 

  59. Chan, S. O. and M. Molloy, (k+1)-cores have k-factors, Combin. Probab. Comput., 21 (2012), 882–896.

    MATH  MathSciNet  Google Scholar 

  60. Chung, F. and L. Lu, The diameter of sparse random graphs, Adv. Appl. Math., 26 (2001), 257–279.

    MATH  MathSciNet  Google Scholar 

  61. Chvátal, V., Almost all graphs with 1.44n edges are 3-colorable, Random Struct. Alg., 2 (1991), 11–28.

    MATH  Google Scholar 

  62. Coja-Oghlan, A., C. Moore and V. Sanwalani, Counting connected graphs and hypergraphs via the probabilistic method, Random Struct. Alg., 31 (2007), 288–329.

    MATH  MathSciNet  Google Scholar 

  63. Cooper, C. and A. Frieze, A general model of web graphs, Random Struct. Alg., 22 (2003), 311–335.

    MATH  MathSciNet  Google Scholar 

  64. da Costa, R. A., S. N. Dorogovtsev, A. V. Goltsev and J. F. F. Mendes, Explosive percolation transition is actually continuous, Phys. Rev. Lett., 105 (2010), 255701 (4 pages).

    Google Scholar 

  65. DeVille, R. E. L. and C. S. Peskin, Synchrony and asynchrony for neuronal dynamics defined on complex networks, Bull. Math. Biol., 74 (2012), 769–802.

    MathSciNet  Google Scholar 

  66. Ding, J., J. H. Kim, E. Lubetzky and Y. Peres, Diameters in supercritical random graphs via first-passage percolation, Combin. Probab. Comput., 19 (2010), 729–751.

    MATH  MathSciNet  Google Scholar 

  67. Ding, J., J. H. Kim, E. Lubetzky and Y. Peres, Anatomy of a young giant component in the random graph, Random Struct. Alg., 39 (2011), 139–178.

    MATH  MathSciNet  Google Scholar 

  68. Dorogovtsev, S. N. and J. F. F. Mendes, Evolution of networks, Adv. Phys., 51 (2002), 1079.

    Google Scholar 

  69. Dorogovtsev, S. N. and J. F. F. Mendes, Evolution of networks. From biological nets to the Internet and WWW. Oxford University Press, Oxford, 2003, x+264 pp.

    MATH  Google Scholar 

  70. Durrett, R., Rigorous result for the CHKNS random graph model, Proceedings, Discrete Random Walks 2003, Cyril Banderier and Christian Krattenthaler, Eds. Discrete Mathematics and Theoretical Computer Science, AC (2003), 95–104.

    Google Scholar 

  71. Erdős, L., A. Knowles, H.-T. Yau and J. Yin, Spectral statistics of Erdős-Rényi Graphs II: Eigenvalue spacing and the extreme eigenvalues, Comm. Math. Phys., 314 (2012), 587–640.

    MathSciNet  Google Scholar 

  72. Erdős, L. and H.-T. Yau, Universality of local spectral statistics of random matrices, Bull. Amer. Math. Soc. (N.S.), 49 (2012), 377–414.

    MathSciNet  Google Scholar 

  73. Erdős, P. and A. Rényi, On random graphs, I., Publ. Math. Debrecen, 6 (1959), 290–297.

    MathSciNet  Google Scholar 

  74. Erdős, P. and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl., 5 (1960), 17–61.

    Google Scholar 

  75. Erdős, P. and A. Rényi, On the strength of connectedness of a random graph, Acta Math. Acad. Sci. Hungar., 12 (1961), 261–267.

    MathSciNet  Google Scholar 

  76. Erdős, P. and A. Rényi, On the evolution of random graphs, Bull. Inst. Internat. Statist., 38 (1961), 343–347.

    MathSciNet  Google Scholar 

  77. Erdős, P. and A. Rényi, Asymmetric graphs, Acta Math. Acad. Sci. Hungar., 14 (1963), 295–315.

    MathSciNet  Google Scholar 

  78. Erdős, P. and A. Rényi, On random matrices, Magyar Tud. Akad. Mat. Kutató Int. Közl., 8 (1964), 455–461.

    Google Scholar 

  79. Erdős, P. and A. Rényi, On the existence of a factor of degree one of a connected random graph, Acta Math. Acad. Sci. Hungar., 17 (1966), 359–368.

    MathSciNet  Google Scholar 

  80. Erdős, P. and A. Rényi, On random matrices, II., Studia Sci. Math. Hungar., 3 (1968), 459–464.

    Google Scholar 

  81. Faloutsos, M., P. Faloutsos and C. Faloutsos, On power-law relationships of the internet topology, SIGCOMM 1999, Comput. Commun. Rev., 29 (1999), 251.

    Google Scholar 

  82. Fernholz, D. and V. Ramachandran, The diameter of sparse random graphs, Random Struct. Alg., 31 (2007), 482–516.

    MATH  MathSciNet  Google Scholar 

  83. Fountoulakis, N., Percolation on sparse random graphs with given degree sequence, Internet Mathematics, 4 (2007), 329–356.

    MathSciNet  Google Scholar 

  84. Friedgut, E., Sharp thresholds of graph properties and the k-sat problem, with an appendix by Jean Bourgain, J. Amer. Math. Soc., 12 (1999), 1017–1054.

    MATH  MathSciNet  Google Scholar 

  85. Friedgut, E. and G. Kalai, Every monotone graph property has a sharp threshold, Proc. Amer. Math. Soc., 124 (1996), 2993–3002.

    MATH  MathSciNet  Google Scholar 

  86. Frieze, A., Perfect matchings in random bipartite graphs with minimal degree at least 2, Random Struct. Alg., 26 (2005), 319–358.

    MATH  MathSciNet  Google Scholar 

  87. Frieze, A. and B. Pittel, Perfect matchings in random graphs with prescribed minimal degree, in Mathematics and Computer Science III, pp. 95–132, Trends Math., Birkhäuser, Basel, 2004.

    Google Scholar 

  88. Gilbert, E. N., Enumeration of labelled graphs, Canad. J. Math., 8 (1956), 405–411.

    MATH  MathSciNet  Google Scholar 

  89. Gilbert, E. N., Random graphs, Ann. Math. Statist., 30 (1959), 1141–1144.

    MATH  MathSciNet  Google Scholar 

  90. Goerdt, A., The giant component threshold for random regular graphs with edge faults, Theoret. Comput. Sci., 259 (2001), 307–321.

    MATH  MathSciNet  Google Scholar 

  91. Hatami, H. and M. Molloy, The scaling window for a random graph with a given degree sequence, Random Struct. Alg., 41 (2012), 99–123.

    MATH  MathSciNet  Google Scholar 

  92. Janson S., D. Knuth, T. Luczak and B. Pittel, The birth of the giant component, with an introduction by the editors, Random Struct. Alg., 4 (1994), 231–358.

    MathSciNet  Google Scholar 

  93. Janson, S. and M. J. Luczak, A new approach to the giant component problem, Random Struct. Alg., 34 (2009), 197–216.

    MATH  MathSciNet  Google Scholar 

  94. Janson, S., T. Luczak and A. Ruciński, An exponential bound for the probability of nonexistence of a specified subgraph in a random graph, in Random Graphs ′87 (Poznań, 1987), Wiley, Chichester (1990), 73–87.

    Google Scholar 

  95. Janson, S., T. Luczak and A. Ruciński, Random Graphs, John Wiley and Sons, New York, 2000, xi+333 pp.

    MATH  Google Scholar 

  96. Janson, S. and O. Riordan, Duality in inhomogeneous random graphs and the cut metric, Random Struct. Alg., 39 (2011), 399–411.

    MATH  MathSciNet  Google Scholar 

  97. Janson, S. and O. Riordan, Susceptibility in inhomogeneous random graphs, Electron. J. Combin., 19 (2012), Paper 31, 59 pp.

    Google Scholar 

  98. Janson, S. and J. Spencer, Phase transitions for modified Erdős-Rényi processes, Ark. Mat., 50 (2012), 305–329.

    MATH  MathSciNet  Google Scholar 

  99. Joseph, A., The component sizes of a critical random graph with given degree sequence, preprint (2010), arXiv:1012.2352

    Google Scholar 

  100. Kahn, J., G. Kalai and N. Linial, The influence of variables on Boolean functions, in Proc. 29-th Ann. Symp. on Foundations of Comp. Sci., pp. 68–80, Computer Society Press, 1988.

    Google Scholar 

  101. Kalikow, S. and B. Weiss, When are random graphs connected?, Israel J. Math., 62 (1988), 257–268.

    MATH  MathSciNet  Google Scholar 

  102. Kang, M., W. Perkins and J. Spencer, The Bohman-Frieze process near criticality, preprint (2011) arXiv:1106.0484

    Google Scholar 

  103. Kang, M. and T. G. Seierstad, The critical phase for random graphs with a given degree sequence, Combin. Probab. Comput., 17 (2008), 67–86.

    MATH  MathSciNet  Google Scholar 

  104. Karoński, M. and T. Luczak, The phase transition in a random hypergraph, J. Comput. Appl. Math., 142 (2002), 125–135.

    MATH  MathSciNet  Google Scholar 

  105. Karoński, M. and A. Ruciński, On the number of strictly balanced subgraphs of a random graph, in Graph Theory (Lagów, 1981), Lecture Notes in Math., 1018, Springer, Berlin (1983), 79–83.

    Google Scholar 

  106. Karoński, M. and A. Ruciński, Poisson convergence and semi-induced properties of random graphs, Math. Proc. Cambridge Philos. Soc., 101 (1987), 291–300.

    MathSciNet  Google Scholar 

  107. Karoński, M. and A. Ruciński, The origins of the theory of random graphs, in The Mathematics of Paul Erdős, I, Algorithms Combin., 13 Springer, 1997, pp. 311–336.

    Google Scholar 

  108. Karp, R. M., The transitive closure of a random digraph, Random Struct. Alg., 1 (1990), 73–93.

    MATH  MathSciNet  Google Scholar 

  109. Katona, G., A theorem of finite sets, Theory of graphs (Proc. Colloq., Tihany, 1966), Academic Press, New York, 1968, 187–207.

    Google Scholar 

  110. Kim, J. H., B. Sudakov and V. H. Vu, On the asymmetry of random regular graphs and random graphs, Random Struct. Alg., 21 (2002), 216–224.

    MATH  MathSciNet  Google Scholar 

  111. Krivelevich, M., E. Lubetzky and B. Sudakov, Cores of random graphs are born Hamiltonian, preprint (2013) arXiv:1303.3524.

    Google Scholar 

  112. Kruskal, J. B., The number of simplices in a complex, in Mathematical Optimization Techniques, University of California Press, Berkeley, California, 1963, pp. 251–278.

    Google Scholar 

  113. Kumar, R., P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins and E. Upfal, Stochastic models for the web graph, FOCS 2000.

    Google Scholar 

  114. Lotka, A. J., The frequency distribution of scientific productivity, J. of the Washington Acad. of Sci., 16 (1926), 317.

    Google Scholar 

  115. Lovász, L. and B. Szegedy, Limits of dense graph sequences, J. Combin. Theory B, 96 (2006), 933–957.

    MATH  Google Scholar 

  116. Luczak, M. and T. Luczak, The phase transition in the cluster-scaled model of a random graph, Random Struct. Alg., 28 (2006), 215–246.

    MATH  MathSciNet  Google Scholar 

  117. Luczak, T., Component behavior near the critical point of the random graph process, Random Struct. Alg., 1 (1990), 287–310.

    MATH  MathSciNet  Google Scholar 

  118. Luczak, T., Size and connectivity of the k-core of a random graph, Discrete Math., 91 (1991), 61–68.

    MATH  MathSciNet  Google Scholar 

  119. Luczak, T., A note on the sharp concentration of the chromatic number of random graphs, Combinatorica, 11 (1991), 295–297.

    MATH  MathSciNet  Google Scholar 

  120. Luczak, T., Cycles in a random graph near the critical point, Random Struct. Alg., 2 (1991), 421–439.

    MATH  MathSciNet  Google Scholar 

  121. Luczak, T., Random trees and random graphs, Random Struct. Alg., 13 (1998), 485–500.

    MATH  MathSciNet  Google Scholar 

  122. Luczak, T., B. Pittel and J. C. Wierman, The structure of a random graph at the point of the phase transition, Trans. Amer. Math. Soc., 341 (1994), 721–748.

    MATH  MathSciNet  Google Scholar 

  123. Luczak, T. and J. C. Wierman, The chromatic number of random graphs at the double-jump threshold, Combinatorica, 9 (1989), 39–49.

    MATH  MathSciNet  Google Scholar 

  124. Martin-Löf, A., Symmetric sampling procedures, general epidemic processes and their threshold limit theorems, J. Appl. Probab., 23 (1986), 265–282.

    MATH  MathSciNet  Google Scholar 

  125. Milgram, S., The small world phenomenon, Psychol. Today, 2 (1967), 60–67.

    Google Scholar 

  126. Molloy, M. and B. Reed, A critical point for random graphs with a given degree sequence, Random Struct. Alg., 6 (1995), 161–179.

    MATH  Google Scholar 

  127. Molloy, M. and B. Reed, The size of the giant component of a random graph with a given degree sequence, Combin. Probab. Comput., 7 (1998), 295–305.

    MATH  MathSciNet  Google Scholar 

  128. Nachmias, A. and Y. Peres, Component sizes of the random graph outside the scaling window, ALEA Lat. Am. J. Probab. Math. Stat., 3 (2007), 133–142.

    MATH  MathSciNet  Google Scholar 

  129. Nachmias, A. and Y. Peres, Critical percolation on random regular graphs, Random Struct. Alg., 36 (2010), 111–148.

    MATH  Google Scholar 

  130. Newman, M. E. J., Random graphs with clustering, Phys. Rev. Lett., 103 (2009), 058701 [4 pages].

    Google Scholar 

  131. Newman, M. E. J., S. H. Strogatz and D. J. Watts, Random graphs with arbitrary degree distribution and their applications, Physical Review E, 64 (2001), 026118.

    Google Scholar 

  132. Norros, I. and H. Reittu, On a conditionally Poissonian graph process, Adv. Appl. Probab., 38 (2006), 59–75.

    MATH  MathSciNet  Google Scholar 

  133. Panagiotou, K., R. Spöhel, A. Steger and H. Thomas, Explosive percolation in Erdős-Rényi-like random graph processes, Combin. Probab. Comput., 22 (2013), 133–145.

    MATH  MathSciNet  Google Scholar 

  134. Pittel, B., On tree census and the giant component in sparse random graphs, Random Struct. Alg., 1 (1990), 311–342.

    MATH  MathSciNet  Google Scholar 

  135. Pittel, B., Edge percolation on a random regular graph of low degree, Ann. Probab., 36 (2008), 1359–1389.

    MATH  MathSciNet  Google Scholar 

  136. Pittel, B., J. Spencer and N. Wormald, Sudden emergence of a giant k-core in a random graph, J. Combin. Theory Ser. B, 67 (1996), 111–151.

    MATH  MathSciNet  Google Scholar 

  137. Pittel, B. and N. Wormald, Counting connected graphs inside-out, J. Combinatorial Theory B, 93 (2005), 127–172.

    MATH  MathSciNet  Google Scholar 

  138. Pralat, P., J. Verstraëte and N. Wormald, On the threshold for k-regular subgraphs of random graphs, Combinatorica, 31 (2011), 565–581.

    MATH  MathSciNet  Google Scholar 

  139. Riddell, R. J. Jr. and G. E. Uhlenbeck, On the theory of virial development of the equation of state of monoatomic gases, J. Chem. Phys., 21 (1953), 2056–2064.

    MathSciNet  Google Scholar 

  140. Riordan, O., The small giant component in scale-free random graphs, Combin. Probab. Comput., 14 (2005), 897–938.

    MATH  MathSciNet  Google Scholar 

  141. Riordan, O., The k-core and branching processes, Combin. Probab. Comput., 17 (2008), 111–136.

    MATH  MathSciNet  Google Scholar 

  142. Riordan, O., The phase transition in the configuration model, Combin. Probab. Comput., 21 (2012), 265–299.

    MATH  MathSciNet  Google Scholar 

  143. Riordan, O. and L. Warnke, Explosive percolation is continuous, Science, 333 (2011), 322–324.

    Google Scholar 

  144. Riordan, O. and L. Warnke, Convergence of Achlioptas processes via differential equations with unique solutions, preprint (2011), arXiv:1111.6179

    Google Scholar 

  145. Riordan, O. and L. Warnke, Achlioptas process phase transitions are continuous, Ann. Appl. Probab., 22 (2012), 1450–1464.

    MATH  MathSciNet  Google Scholar 

  146. Riordan, O. and L. Warnke, Achlioptas processes can be nonconvergent, Phys. Rev. E, 86 (2012), 011129 (4 pages).

    Google Scholar 

  147. Riordan, O. and L. Warnke, The evolution of subcritical Achlioptas processes, preprint (2012), arXiv:1204.5068

    Google Scholar 

  148. Riordan, O. and N. Wormald, The diameter of sparse random graphs, Combin. Probab. Comput., 19 (2010), 835–926.

    MATH  MathSciNet  Google Scholar 

  149. Robinson, R. W. and N. C. Wormald, Almost all cubic graphs are Hamiltonian, Random Struct. Alg., 3 (1992), 117–125.

    MATH  MathSciNet  Google Scholar 

  150. Ruciński, A. and A. Vince, Balanced graphs and the problem of subgraphs of random graphs, Proc. of the 16th Southeastern International conference on Combinatorics, Graph Theory and Computing (Boca Raton, Fla, 1985), Congr. Numer., 49 (1985), 181–190.

    Google Scholar 

  151. Ruciński, A. and A. Vince, Strongly balanced graphs and random graphs, J. Graph Theory, 10 (1986), 251–264.

    MATH  MathSciNet  Google Scholar 

  152. Ruciński, A. and A. Vince, Balanced extensions of graphs and hypergraphs, Combinatorica, 8 (1988), 279–291.

    MATH  MathSciNet  Google Scholar 

  153. Ruciński, A. and A. Vince, The solution to an extremal problem on balanced extensions of graphs, J. Graph Theory, 17 (1993), 417–431.

    MATH  MathSciNet  Google Scholar 

  154. Schmidt-Pruzan, J. and E. Shamir, Component structure in the evolution of random hypergraphs, Combinatorica, 5 (1985), 81–94.

    MATH  MathSciNet  Google Scholar 

  155. Shepp, L. A., Connectedness of certain random graphs, Israel J. Math., 67 (1989), 23–33.

    MATH  MathSciNet  Google Scholar 

  156. Söderberg, B., General formalism for inhomogeneous random graphs, Phys. Rev. E, 66 (2002), 066121 [6 pages].

    Google Scholar 

  157. Spencer, J. and N. C. Wormald, Birth control for giants, Combinatorica, 27 (2007), 587–628.

    MATH  MathSciNet  Google Scholar 

  158. Stepanov, V. E., Phase transitions in random graphs, (in Russian) Teor. Verojatnost. i Primenen., 15 (1970), 200–216. Translated in Theory Probab. Appl., 15 (1970), 55–67.

    MathSciNet  Google Scholar 

  159. Turova, T. S., Dynamical random graphs with memory, Phys. Rev. E, 65 (2002), 066102. Erratum: Phys. Rev. E, 70 (2004), 059902(E).

    Google Scholar 

  160. Turova, T. S., Phase transitions in dynamical random graphs, J. Statist. Phys., 123 (2006), 1007–1032.

    MATH  MathSciNet  Google Scholar 

  161. Turova, T. S., Diffusion approximation for the components in critical inhomogeneous random graphs of rank 1, preprint (2009), arXiv:0907.0897

    Google Scholar 

  162. Turova, T. S., The largest component in subcritical inhomogeneous random graphs, Combin. Probab. Comput., 20 (2011), 131–154.

    MATH  MathSciNet  Google Scholar 

  163. Watts, D. J., Small worlds. The dynamics of networks between order and randomness. Princeton Studies in Complexity. Princeton University Press, Princeton, NJ, 1999. xvi+262 pp.

    Google Scholar 

  164. Watts, D. J., Six degrees. The science of a connected age. W. W. Norton & Co. Inc., New York, 2003. 368 pp.

    Google Scholar 

  165. Watts, D. J. and S. H. Strogatz, Collective dynamics of’ small-world’ networks, Nature, 393 (1998), 440–442.

    Google Scholar 

  166. Wormald, N. C., The differential equation method for random graph processes and greedy algorithms, in Lectures on approximation and randomized algorithms, pages 73–155. PWN, Warsaw, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Bollobás, B., Riordan, O. (2013). The Phase Transition in the Erdős-Rényi Random Graph Process. In: Lovász, L., Ruzsa, I.Z., Sós, V.T. (eds) Erdős Centennial. Bolyai Society Mathematical Studies, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39286-3_3

Download citation

Publish with us

Policies and ethics