Advertisement

The Phase Transition in the Erdős-Rényi Random Graph Process

  • Béla Bollobás
  • Oliver Riordan
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 25)

Abstract

We shall review the foundation of the theory of random graphs by Paul Erdős and Alfréd Rényi, and sketch some of the later developments concerning the giant component, including some very recent results.

Keywords

Random Graph Chromatic Number Preferential Attachment Degree Sequence Giant Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Achlioptas, D., R. M. D’Souza and J. Spencer, Explosive percolation in random networks, Science, 323 (2009), 1453–1455.zbMATHMathSciNetGoogle Scholar
  2. [2]
    Achlioptas, D. and A. Naor, The two possible values of the chromatic number of a random graph, Ann. of Math. (2), 162 (2005), 1335–1351.Google Scholar
  3. [3]
    Addario-Berry, L., N. Broutin and C. Goldschmidt, The continuum limit of critical random graphs, Probab. Theory Related Fields, 152 (2012), 367–406.zbMATHMathSciNetGoogle Scholar
  4. [4]
    Aiello, W., F. Chung and L. Lu, A random graph model for power law graphs, Experiment. Math., 10 (2001), 53–66.zbMATHMathSciNetGoogle Scholar
  5. [5]
    Albert, R. and A.-L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys., 74 (2002), 47–97.zbMATHGoogle Scholar
  6. [6]
    Albert, R., H. Jeong and A.-L. Barabási, Diameter of the world-wide web, Nature, 401 (1999), 130–131.Google Scholar
  7. [7]
    Aldous, D., Brownian excursions, critical random graphs and the multiplicative coalescent, Ann. Probab., 25 (1997), 812–854.zbMATHMathSciNetGoogle Scholar
  8. [8]
    Alon, N., S. Friedland and G. Kalai, Regular subgraphs of almost regular graphs, J. Combin. Theory Ser. B, 37 (1984), 79–91.zbMATHMathSciNetGoogle Scholar
  9. [9]
    Alon, N. and M. Krivelevich, The concentration of the chromatic number of random graphs, Combinatorica, 17 (1997), 303–313.zbMATHMathSciNetGoogle Scholar
  10. [10]
    Arratia, R. and E. S. Lander, The distribution of clusters in random graphs, Adv. in Appl. Math., 11 (1990), 36–48.zbMATHMathSciNetGoogle Scholar
  11. [11]
    Austin, T. L., R. E. Fagen, W. F. Penney and J. Riordan, The number of components in random linear graphs, Ann. Math. Statist., 30 (1959), 747–754.zbMATHMathSciNetGoogle Scholar
  12. [12]
    Babai, L., P. Erdős and S. M. Selkow, Random graph isomorphism, SIAM J. Comput., 9 (1980), 628–635.zbMATHMathSciNetGoogle Scholar
  13. [13]
    Barabási, A.-L., Linked: the new science of networks. Perseus Books; First Printing edition (2003), 288 pages.Google Scholar
  14. [14]
    Barabási, A.-L. and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509–512.MathSciNetGoogle Scholar
  15. [15]
    Barabási, A.-L., R. Albert and H. Jeong, Scale-free characteristics of random networks: the topology of the world-wide web, Physica A, 281 (2000), 69–77.Google Scholar
  16. [16]
    Barbour, A. D., Poisson convergence and random graphs, Math. Proc. Cambridge Philos. Soc., 92 (1982), 349–359.zbMATHMathSciNetGoogle Scholar
  17. [17]
    Barbour, A. D., S. Janson, M. Karoński and A. Ruciński, Small cliques in random graphs, Random Struct. Alg., 1 (1990), 403–434.zbMATHGoogle Scholar
  18. [18]
    Barbour, A.D., M. Karoński and A. Ruciński, A central limit theorem for decomposable random variables with applications to random graphs, J. Combin. Theory Ser. B, 47 (1989), 125–145.zbMATHMathSciNetGoogle Scholar
  19. [19]
    Behrisch, M., A. Coja-Oghlan and M. Kang, The order of the giant component of random hypergraphs, Random Struct. Alg., 36 (2010), 149–184.zbMATHMathSciNetGoogle Scholar
  20. [20]
    Bhamidi, S., A. Budhiraja and X. Wang, Bounded-size rules: The barely subcritical regime, preprint (2012) arXiv:1212.5480Google Scholar
  21. [21]
    Bhamidi, S., A. Budhiraja and X. Wang, The augmented multiplicative coalescent and critical dynamic random graph models, preprint (2012) arXiv:1212.5493Google Scholar
  22. [22]
    Bhamidi, S., R. van der Hofstad and G. Hooghiemstra, First passage percolation on random graphs with finite mean degrees, Ann. Appl. Probab., 20 (2010), 1907–1965.zbMATHMathSciNetGoogle Scholar
  23. [23]
    Bhamidi, S., R. van der Hofstad and J. S. H. van Leeuwaarden, Scaling limits for critical inhomogeneous random graphs with finite third moments, Electron. J. Probab., 15 (2010), 1682–1703.zbMATHMathSciNetGoogle Scholar
  24. [24]
    Bohman, T. and A. Frieze, Avoiding a giant component, Random Struct. Alg., 19 (2001), 75–85.zbMATHMathSciNetGoogle Scholar
  25. [25]
    Bohman, T. and D. Kravitz, Creating a giant component, Combin. Probab. Comput., 15 (2006), 489–511.zbMATHMathSciNetGoogle Scholar
  26. [26]
    Bollobás, B., A probabilistic proof of an asymptotic formula for the number of labelled regular graphs, European J. Combin., 1 (1980), 311–316.zbMATHMathSciNetGoogle Scholar
  27. [27]
    Bollobás, B., Threshold functions for small subgraphs, Math. Proc. Cambridge Philos. Soc., 90 (1981), 197–206.zbMATHMathSciNetGoogle Scholar
  28. [28]
    Bollobás, B., The evolution of sparse graphs, Graph theory and combinatorics (Cambridge, 1983), Academic Press (1984), 35–57.Google Scholar
  29. [29]
    Bollobás, B., The evolution of random graphs, Trans. Amer. Math. Soc., 286 (1984), 257–274.zbMATHMathSciNetGoogle Scholar
  30. [30]
    Bollobás, B., Paul Erdős and probability theory, Proceedings of the Eighth International Conference “Random Structures and Algorithms” (Poznań, 1997), Random Struct. Alg., 13 (1998), 521–533.zbMATHGoogle Scholar
  31. [31]
    Bollobás, B., Modern Graph Theory, Graduate Texts in Mathematics 184, Springer-Verlag, New York, 1998, xiv+394 pp.zbMATHGoogle Scholar
  32. [32]
    Bollobás, B., Random Graphs, Second edition, Cambridge Studies in Advanced Mathematics, 73, Cambridge University Press, Cambridge, 2001, xviii+498 pp.zbMATHGoogle Scholar
  33. [33]
    Bollobás, B., The Erdős-Rényi theory of random graphs, in Paul Erdős and his mathematics, II (Budapest, 1999), pp. 79–134, Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Budapest, 2002.Google Scholar
  34. [34]
    Bollobás, B., C. Borgs, T. Chayes and O. Riordan, Directed scale-free graphs. Proc. 14th ACM-SIAM Symposium on Discrete Algorithms, 132–139 (2003).Google Scholar
  35. [35]
    Bollobás, B., C. Borgs, J. Chayes and O. Riordan, Percolation on dense graph sequences, Annals of Probability, 38 (2010), 150–183.zbMATHMathSciNetGoogle Scholar
  36. [36]
    Bollobás, B. and F. R. K. Chung, The diameter of a cycle plus a random matching, SIAM J. Discrete Math., 1 (1988), 328–333.zbMATHMathSciNetGoogle Scholar
  37. [37]
    Bollobás, B. and A. M. Frieze, On matchings and Hamiltonian cycles in random graphs, in Random Graphs ′83 (Poznań, 1983), pp. 23–46, North-Holland Math. Stud., 118, North-Holland, Amsterdam, 1985.Google Scholar
  38. [38]
    Bollobás, B., S. Janson and O. Riordan, The phase transition in the uniformly grown random graph has infinite order, Random Struct. Alg., 26 (2005), 1–36.zbMATHGoogle Scholar
  39. [39]
    Bollobás, B., S. Janson and O. Riordan, The phase transition in inhomogeneous random graphs, Random Struct. Alg., 31 (2007), 3–122.zbMATHGoogle Scholar
  40. [40]
    Bollobás, B., S. Janson and O. Riordan, The cut metric, random graphs and branching processes, J. Statist. Phys., 140 (2010), 289–335.zbMATHGoogle Scholar
  41. [41]
    Bollobás, B., S. Janson and O. Riordan, Sparse random graphs with clustering, Random Struct. Alg., 38 (2011), 269–323.zbMATHGoogle Scholar
  42. [42]
    Bollobás, B., J. H. Kim and J. Verstraëte, Regular subgraphs of random graphs, Random Struct. Alg., 29 (2006), 1–13.zbMATHGoogle Scholar
  43. [43]
    Bollobás, B. and O. Riordan, Mathematical results on scale-free random graphs, in Handbook of Graphs and Networks, pp. 1–34, Wiley-VCH, Weinheim, 2003.Google Scholar
  44. [44]
    Bollobás, B. and O. Riordan, The diameter of a scale-free random graph, Combinatorica, 24 (2004), 5–34.zbMATHMathSciNetGoogle Scholar
  45. [45]
    Bollobás, B. and O. Riordan, Random graphs and branching processes, in Handbook of large-scale random networks, Bolyai Soc. Math. Stud., 18, B. Bollobás, R. Kozma and D. Miklós eds (2009), pp. 15–115.Google Scholar
  46. [46]
    Bollobás, B. and O. Riordan, Metrics for sparse graphs, in Surveys in Combinatorics 2009, London Math. Soc. Lecture Note Series, 365, S. Huczynska, J. D. Mitchell and C. M. Roney-Dougal eds, CUP (2009), pp. 212–287.Google Scholar
  47. [47]
    Bollobás, B. and O. Riordan, Asymptotic normality of the size of the giant component via a random walk, J. Combin. Theory (B), 102 (2012), 53–61.zbMATHGoogle Scholar
  48. [48]
    Bollobás, B. and O. Riordan, Asymptotic normality of the size of the giant component in a random hypergraph, Random Struct. Alg., 41 (2012), 441–450.zbMATHGoogle Scholar
  49. [49]
    Bollobás, B. and O. Riordan, An old approach to the giant component problem, preprint (2012) arXiv:1209.3691Google Scholar
  50. [51]
    Bollobás, B., O. Riordan, J. Spencer and G. Tusnády, The degree sequence of a scale-free random graph process, Random Struct. Alg., 18 (2001), 279–290.zbMATHGoogle Scholar
  51. [52]
    Bollobás, B. and A. G. Thomason, Random graphs of small order, in Random Graphs ′83 (Poznań, 1983), North-Holland Math. Studies, 118, North Holland, Amsterdam, 1985, pp. 47–97.Google Scholar
  52. [53]
    Bollobás, B. and A. Thomason, Threshold functions, Combinatorica, 7 (1987), 35–38.zbMATHMathSciNetGoogle Scholar
  53. [54]
    Borgs, C., J. T. Chayes, L. Lovász, V. T. Sós and K. Vesztergombi, Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing, Advances in Math., 219 (2008), 1801–1851.zbMATHGoogle Scholar
  54. [55]
    Borgs, C., J. T. Chayes, L. Lovász, V. T. Sós and K. Vesztergombi, Convergent sequences of dense graphs II. Multiway cuts and statistical physics, Ann. of Math. (2), 176 (2012), 151–219.Google Scholar
  55. [56]
    Bourgain, J., J. Kahn, G. Kalai, Y. Katznelson and N. Linial, The influence of variables in product spaces, Israel J. Math., 77 (1992), 55–64.zbMATHMathSciNetGoogle Scholar
  56. [57]
    Burtin, Ju. D., Asymptotic estimates of the diameter and the independence and domination numbers of a random graph, Dokl. Akad. Nauk SSSR, 209 (1973), 765–768, transl. in Soviet Math. Dokl., 14 (1973), 497–501.MathSciNetGoogle Scholar
  57. [58]
    Burtin, Ju. D., Extremal metric characteristics of a random graph. I, Teor. Verojatnost. i Primenen., 19 (1974), 740–754.MathSciNetGoogle Scholar
  58. [59]
    Callaway, D. S., J. E. Hopcroft, J. M. Kleinberg, M. E. J. Newman and S. H. Strogatz, Are randomly grown graphs really random?, Phys. Rev. E, 64 (2001), 041902.Google Scholar
  59. [60]
    Chan, S. O. and M. Molloy, (k+1)-cores have k-factors, Combin. Probab. Comput., 21 (2012), 882–896.zbMATHMathSciNetGoogle Scholar
  60. [61]
    Chung, F. and L. Lu, The diameter of sparse random graphs, Adv. Appl. Math., 26 (2001), 257–279.zbMATHMathSciNetGoogle Scholar
  61. [62]
    Chvátal, V., Almost all graphs with 1.44n edges are 3-colorable, Random Struct. Alg., 2 (1991), 11–28.zbMATHGoogle Scholar
  62. [63]
    Coja-Oghlan, A., C. Moore and V. Sanwalani, Counting connected graphs and hypergraphs via the probabilistic method, Random Struct. Alg., 31 (2007), 288–329.zbMATHMathSciNetGoogle Scholar
  63. [64]
    Cooper, C. and A. Frieze, A general model of web graphs, Random Struct. Alg., 22 (2003), 311–335.zbMATHMathSciNetGoogle Scholar
  64. [65]
    da Costa, R. A., S. N. Dorogovtsev, A. V. Goltsev and J. F. F. Mendes, Explosive percolation transition is actually continuous, Phys. Rev. Lett., 105 (2010), 255701 (4 pages).Google Scholar
  65. [66]
    DeVille, R. E. L. and C. S. Peskin, Synchrony and asynchrony for neuronal dynamics defined on complex networks, Bull. Math. Biol., 74 (2012), 769–802.MathSciNetGoogle Scholar
  66. [67]
    Ding, J., J. H. Kim, E. Lubetzky and Y. Peres, Diameters in supercritical random graphs via first-passage percolation, Combin. Probab. Comput., 19 (2010), 729–751.zbMATHMathSciNetGoogle Scholar
  67. [68]
    Ding, J., J. H. Kim, E. Lubetzky and Y. Peres, Anatomy of a young giant component in the random graph, Random Struct. Alg., 39 (2011), 139–178.zbMATHMathSciNetGoogle Scholar
  68. [69]
    Dorogovtsev, S. N. and J. F. F. Mendes, Evolution of networks, Adv. Phys., 51 (2002), 1079.Google Scholar
  69. [70]
    Dorogovtsev, S. N. and J. F. F. Mendes, Evolution of networks. From biological nets to the Internet and WWW. Oxford University Press, Oxford, 2003, x+264 pp.zbMATHGoogle Scholar
  70. [71]
    Durrett, R., Rigorous result for the CHKNS random graph model, Proceedings, Discrete Random Walks 2003, Cyril Banderier and Christian Krattenthaler, Eds. Discrete Mathematics and Theoretical Computer Science, AC (2003), 95–104.Google Scholar
  71. [72]
    Erdős, L., A. Knowles, H.-T. Yau and J. Yin, Spectral statistics of Erdős-Rényi Graphs II: Eigenvalue spacing and the extreme eigenvalues, Comm. Math. Phys., 314 (2012), 587–640.MathSciNetGoogle Scholar
  72. [73]
    Erdős, L. and H.-T. Yau, Universality of local spectral statistics of random matrices, Bull. Amer. Math. Soc. (N.S.), 49 (2012), 377–414.MathSciNetGoogle Scholar
  73. [74]
    Erdős, P. and A. Rényi, On random graphs, I., Publ. Math. Debrecen, 6 (1959), 290–297.MathSciNetGoogle Scholar
  74. [75]
    Erdős, P. and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl., 5 (1960), 17–61.Google Scholar
  75. [76]
    Erdős, P. and A. Rényi, On the strength of connectedness of a random graph, Acta Math. Acad. Sci. Hungar., 12 (1961), 261–267.MathSciNetGoogle Scholar
  76. [77]
    Erdős, P. and A. Rényi, On the evolution of random graphs, Bull. Inst. Internat. Statist., 38 (1961), 343–347.MathSciNetGoogle Scholar
  77. [78]
    Erdős, P. and A. Rényi, Asymmetric graphs, Acta Math. Acad. Sci. Hungar., 14 (1963), 295–315.MathSciNetGoogle Scholar
  78. [79]
    Erdős, P. and A. Rényi, On random matrices, Magyar Tud. Akad. Mat. Kutató Int. Közl., 8 (1964), 455–461.Google Scholar
  79. [80]
    Erdős, P. and A. Rényi, On the existence of a factor of degree one of a connected random graph, Acta Math. Acad. Sci. Hungar., 17 (1966), 359–368.MathSciNetGoogle Scholar
  80. [81]
    Erdős, P. and A. Rényi, On random matrices, II., Studia Sci. Math. Hungar., 3 (1968), 459–464.Google Scholar
  81. [82]
    Faloutsos, M., P. Faloutsos and C. Faloutsos, On power-law relationships of the internet topology, SIGCOMM 1999, Comput. Commun. Rev., 29 (1999), 251.Google Scholar
  82. [83]
    Fernholz, D. and V. Ramachandran, The diameter of sparse random graphs, Random Struct. Alg., 31 (2007), 482–516.zbMATHMathSciNetGoogle Scholar
  83. [84]
    Fountoulakis, N., Percolation on sparse random graphs with given degree sequence, Internet Mathematics, 4 (2007), 329–356.MathSciNetGoogle Scholar
  84. [85]
    Friedgut, E., Sharp thresholds of graph properties and the k-sat problem, with an appendix by Jean Bourgain, J. Amer. Math. Soc., 12 (1999), 1017–1054.zbMATHMathSciNetGoogle Scholar
  85. [86]
    Friedgut, E. and G. Kalai, Every monotone graph property has a sharp threshold, Proc. Amer. Math. Soc., 124 (1996), 2993–3002.zbMATHMathSciNetGoogle Scholar
  86. [87]
    Frieze, A., Perfect matchings in random bipartite graphs with minimal degree at least 2, Random Struct. Alg., 26 (2005), 319–358.zbMATHMathSciNetGoogle Scholar
  87. [88]
    Frieze, A. and B. Pittel, Perfect matchings in random graphs with prescribed minimal degree, in Mathematics and Computer Science III, pp. 95–132, Trends Math., Birkhäuser, Basel, 2004.Google Scholar
  88. [89]
    Gilbert, E. N., Enumeration of labelled graphs, Canad. J. Math., 8 (1956), 405–411.zbMATHMathSciNetGoogle Scholar
  89. [90]
    Gilbert, E. N., Random graphs, Ann. Math. Statist., 30 (1959), 1141–1144.zbMATHMathSciNetGoogle Scholar
  90. [91]
    Goerdt, A., The giant component threshold for random regular graphs with edge faults, Theoret. Comput. Sci., 259 (2001), 307–321.zbMATHMathSciNetGoogle Scholar
  91. [92]
    Hatami, H. and M. Molloy, The scaling window for a random graph with a given degree sequence, Random Struct. Alg., 41 (2012), 99–123.zbMATHMathSciNetGoogle Scholar
  92. [93]
    Janson S., D. Knuth, T. Luczak and B. Pittel, The birth of the giant component, with an introduction by the editors, Random Struct. Alg., 4 (1994), 231–358.MathSciNetGoogle Scholar
  93. [94]
    Janson, S. and M. J. Luczak, A new approach to the giant component problem, Random Struct. Alg., 34 (2009), 197–216.zbMATHMathSciNetGoogle Scholar
  94. [95]
    Janson, S., T. Luczak and A. Ruciński, An exponential bound for the probability of nonexistence of a specified subgraph in a random graph, in Random Graphs ′87 (Poznań, 1987), Wiley, Chichester (1990), 73–87.Google Scholar
  95. [96]
    Janson, S., T. Luczak and A. Ruciński, Random Graphs, John Wiley and Sons, New York, 2000, xi+333 pp.zbMATHGoogle Scholar
  96. [97]
    Janson, S. and O. Riordan, Duality in inhomogeneous random graphs and the cut metric, Random Struct. Alg., 39 (2011), 399–411.zbMATHMathSciNetGoogle Scholar
  97. [98]
    Janson, S. and O. Riordan, Susceptibility in inhomogeneous random graphs, Electron. J. Combin., 19 (2012), Paper 31, 59 pp.Google Scholar
  98. [99]
    Janson, S. and J. Spencer, Phase transitions for modified Erdős-Rényi processes, Ark. Mat., 50 (2012), 305–329.zbMATHMathSciNetGoogle Scholar
  99. [100]
    Joseph, A., The component sizes of a critical random graph with given degree sequence, preprint (2010), arXiv:1012.2352Google Scholar
  100. [101]
    Kahn, J., G. Kalai and N. Linial, The influence of variables on Boolean functions, in Proc. 29-th Ann. Symp. on Foundations of Comp. Sci., pp. 68–80, Computer Society Press, 1988.Google Scholar
  101. [102]
    Kalikow, S. and B. Weiss, When are random graphs connected?, Israel J. Math., 62 (1988), 257–268.zbMATHMathSciNetGoogle Scholar
  102. [103]
    Kang, M., W. Perkins and J. Spencer, The Bohman-Frieze process near criticality, preprint (2011) arXiv:1106.0484Google Scholar
  103. [104]
    Kang, M. and T. G. Seierstad, The critical phase for random graphs with a given degree sequence, Combin. Probab. Comput., 17 (2008), 67–86.zbMATHMathSciNetGoogle Scholar
  104. [105]
    Karoński, M. and T. Luczak, The phase transition in a random hypergraph, J. Comput. Appl. Math., 142 (2002), 125–135.zbMATHMathSciNetGoogle Scholar
  105. [106]
    Karoński, M. and A. Ruciński, On the number of strictly balanced subgraphs of a random graph, in Graph Theory (Lagów, 1981), Lecture Notes in Math., 1018, Springer, Berlin (1983), 79–83.Google Scholar
  106. [107]
    Karoński, M. and A. Ruciński, Poisson convergence and semi-induced properties of random graphs, Math. Proc. Cambridge Philos. Soc., 101 (1987), 291–300.MathSciNetGoogle Scholar
  107. [108]
    Karoński, M. and A. Ruciński, The origins of the theory of random graphs, in The Mathematics of Paul Erdős, I, Algorithms Combin., 13 Springer, 1997, pp. 311–336.Google Scholar
  108. [109]
    Karp, R. M., The transitive closure of a random digraph, Random Struct. Alg., 1 (1990), 73–93.zbMATHMathSciNetGoogle Scholar
  109. [110]
    Katona, G., A theorem of finite sets, Theory of graphs (Proc. Colloq., Tihany, 1966), Academic Press, New York, 1968, 187–207.Google Scholar
  110. [111]
    Kim, J. H., B. Sudakov and V. H. Vu, On the asymmetry of random regular graphs and random graphs, Random Struct. Alg., 21 (2002), 216–224.zbMATHMathSciNetGoogle Scholar
  111. [112]
    Krivelevich, M., E. Lubetzky and B. Sudakov, Cores of random graphs are born Hamiltonian, preprint (2013) arXiv:1303.3524.Google Scholar
  112. [113]
    Kruskal, J. B., The number of simplices in a complex, in Mathematical Optimization Techniques, University of California Press, Berkeley, California, 1963, pp. 251–278.Google Scholar
  113. [114]
    Kumar, R., P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins and E. Upfal, Stochastic models for the web graph, FOCS 2000.Google Scholar
  114. [115]
    Lotka, A. J., The frequency distribution of scientific productivity, J. of the Washington Acad. of Sci., 16 (1926), 317.Google Scholar
  115. [116]
    Lovász, L. and B. Szegedy, Limits of dense graph sequences, J. Combin. Theory B, 96 (2006), 933–957.zbMATHGoogle Scholar
  116. [117]
    Luczak, M. and T. Luczak, The phase transition in the cluster-scaled model of a random graph, Random Struct. Alg., 28 (2006), 215–246.zbMATHMathSciNetGoogle Scholar
  117. [118]
    Luczak, T., Component behavior near the critical point of the random graph process, Random Struct. Alg., 1 (1990), 287–310.zbMATHMathSciNetGoogle Scholar
  118. [119]
    Luczak, T., Size and connectivity of the k-core of a random graph, Discrete Math., 91 (1991), 61–68.zbMATHMathSciNetGoogle Scholar
  119. [120]
    Luczak, T., A note on the sharp concentration of the chromatic number of random graphs, Combinatorica, 11 (1991), 295–297.zbMATHMathSciNetGoogle Scholar
  120. [121]
    Luczak, T., Cycles in a random graph near the critical point, Random Struct. Alg., 2 (1991), 421–439.zbMATHMathSciNetGoogle Scholar
  121. [122]
    Luczak, T., Random trees and random graphs, Random Struct. Alg., 13 (1998), 485–500.zbMATHMathSciNetGoogle Scholar
  122. [123]
    Luczak, T., B. Pittel and J. C. Wierman, The structure of a random graph at the point of the phase transition, Trans. Amer. Math. Soc., 341 (1994), 721–748.zbMATHMathSciNetGoogle Scholar
  123. [124]
    Luczak, T. and J. C. Wierman, The chromatic number of random graphs at the double-jump threshold, Combinatorica, 9 (1989), 39–49.zbMATHMathSciNetGoogle Scholar
  124. [125]
    Martin-Löf, A., Symmetric sampling procedures, general epidemic processes and their threshold limit theorems, J. Appl. Probab., 23 (1986), 265–282.zbMATHMathSciNetGoogle Scholar
  125. [126]
    Milgram, S., The small world phenomenon, Psychol. Today, 2 (1967), 60–67.Google Scholar
  126. [127]
    Molloy, M. and B. Reed, A critical point for random graphs with a given degree sequence, Random Struct. Alg., 6 (1995), 161–179.zbMATHGoogle Scholar
  127. [128]
    Molloy, M. and B. Reed, The size of the giant component of a random graph with a given degree sequence, Combin. Probab. Comput., 7 (1998), 295–305.zbMATHMathSciNetGoogle Scholar
  128. [129]
    Nachmias, A. and Y. Peres, Component sizes of the random graph outside the scaling window, ALEA Lat. Am. J. Probab. Math. Stat., 3 (2007), 133–142.zbMATHMathSciNetGoogle Scholar
  129. [130]
    Nachmias, A. and Y. Peres, Critical percolation on random regular graphs, Random Struct. Alg., 36 (2010), 111–148.zbMATHGoogle Scholar
  130. [131]
    Newman, M. E. J., Random graphs with clustering, Phys. Rev. Lett., 103 (2009), 058701 [4 pages].Google Scholar
  131. [132]
    Newman, M. E. J., S. H. Strogatz and D. J. Watts, Random graphs with arbitrary degree distribution and their applications, Physical Review E, 64 (2001), 026118.Google Scholar
  132. [133]
    Norros, I. and H. Reittu, On a conditionally Poissonian graph process, Adv. Appl. Probab., 38 (2006), 59–75.zbMATHMathSciNetGoogle Scholar
  133. [134]
    Panagiotou, K., R. Spöhel, A. Steger and H. Thomas, Explosive percolation in Erdős-Rényi-like random graph processes, Combin. Probab. Comput., 22 (2013), 133–145.zbMATHMathSciNetGoogle Scholar
  134. [135]
    Pittel, B., On tree census and the giant component in sparse random graphs, Random Struct. Alg., 1 (1990), 311–342.zbMATHMathSciNetGoogle Scholar
  135. [136]
    Pittel, B., Edge percolation on a random regular graph of low degree, Ann. Probab., 36 (2008), 1359–1389.zbMATHMathSciNetGoogle Scholar
  136. [137]
    Pittel, B., J. Spencer and N. Wormald, Sudden emergence of a giant k-core in a random graph, J. Combin. Theory Ser. B, 67 (1996), 111–151.zbMATHMathSciNetGoogle Scholar
  137. [138]
    Pittel, B. and N. Wormald, Counting connected graphs inside-out, J. Combinatorial Theory B, 93 (2005), 127–172.zbMATHMathSciNetGoogle Scholar
  138. [139]
    Pralat, P., J. Verstraëte and N. Wormald, On the threshold for k-regular subgraphs of random graphs, Combinatorica, 31 (2011), 565–581.zbMATHMathSciNetGoogle Scholar
  139. [140]
    Riddell, R. J. Jr. and G. E. Uhlenbeck, On the theory of virial development of the equation of state of monoatomic gases, J. Chem. Phys., 21 (1953), 2056–2064.MathSciNetGoogle Scholar
  140. [141]
    Riordan, O., The small giant component in scale-free random graphs, Combin. Probab. Comput., 14 (2005), 897–938.zbMATHMathSciNetGoogle Scholar
  141. [142]
    Riordan, O., The k-core and branching processes, Combin. Probab. Comput., 17 (2008), 111–136.zbMATHMathSciNetGoogle Scholar
  142. [143]
    Riordan, O., The phase transition in the configuration model, Combin. Probab. Comput., 21 (2012), 265–299.zbMATHMathSciNetGoogle Scholar
  143. [144]
    Riordan, O. and L. Warnke, Explosive percolation is continuous, Science, 333 (2011), 322–324.Google Scholar
  144. [145]
    Riordan, O. and L. Warnke, Convergence of Achlioptas processes via differential equations with unique solutions, preprint (2011), arXiv:1111.6179Google Scholar
  145. [146]
    Riordan, O. and L. Warnke, Achlioptas process phase transitions are continuous, Ann. Appl. Probab., 22 (2012), 1450–1464.zbMATHMathSciNetGoogle Scholar
  146. [147]
    Riordan, O. and L. Warnke, Achlioptas processes can be nonconvergent, Phys. Rev. E, 86 (2012), 011129 (4 pages).Google Scholar
  147. [148]
    Riordan, O. and L. Warnke, The evolution of subcritical Achlioptas processes, preprint (2012), arXiv:1204.5068Google Scholar
  148. [149]
    Riordan, O. and N. Wormald, The diameter of sparse random graphs, Combin. Probab. Comput., 19 (2010), 835–926.zbMATHMathSciNetGoogle Scholar
  149. [150]
    Robinson, R. W. and N. C. Wormald, Almost all cubic graphs are Hamiltonian, Random Struct. Alg., 3 (1992), 117–125.zbMATHMathSciNetGoogle Scholar
  150. [151]
    Ruciński, A. and A. Vince, Balanced graphs and the problem of subgraphs of random graphs, Proc. of the 16th Southeastern International conference on Combinatorics, Graph Theory and Computing (Boca Raton, Fla, 1985), Congr. Numer., 49 (1985), 181–190.Google Scholar
  151. [152]
    Ruciński, A. and A. Vince, Strongly balanced graphs and random graphs, J. Graph Theory, 10 (1986), 251–264.zbMATHMathSciNetGoogle Scholar
  152. [153]
    Ruciński, A. and A. Vince, Balanced extensions of graphs and hypergraphs, Combinatorica, 8 (1988), 279–291.zbMATHMathSciNetGoogle Scholar
  153. [154]
    Ruciński, A. and A. Vince, The solution to an extremal problem on balanced extensions of graphs, J. Graph Theory, 17 (1993), 417–431.zbMATHMathSciNetGoogle Scholar
  154. [155]
    Schmidt-Pruzan, J. and E. Shamir, Component structure in the evolution of random hypergraphs, Combinatorica, 5 (1985), 81–94.zbMATHMathSciNetGoogle Scholar
  155. [156]
    Shepp, L. A., Connectedness of certain random graphs, Israel J. Math., 67 (1989), 23–33.zbMATHMathSciNetGoogle Scholar
  156. [157]
    Söderberg, B., General formalism for inhomogeneous random graphs, Phys. Rev. E, 66 (2002), 066121 [6 pages].Google Scholar
  157. [158]
    Spencer, J. and N. C. Wormald, Birth control for giants, Combinatorica, 27 (2007), 587–628.zbMATHMathSciNetGoogle Scholar
  158. [159]
    Stepanov, V. E., Phase transitions in random graphs, (in Russian) Teor. Verojatnost. i Primenen., 15 (1970), 200–216. Translated in Theory Probab. Appl., 15 (1970), 55–67.MathSciNetGoogle Scholar
  159. [160]
    Turova, T. S., Dynamical random graphs with memory, Phys. Rev. E, 65 (2002), 066102. Erratum: Phys. Rev. E, 70 (2004), 059902(E).Google Scholar
  160. [161]
    Turova, T. S., Phase transitions in dynamical random graphs, J. Statist. Phys., 123 (2006), 1007–1032.zbMATHMathSciNetGoogle Scholar
  161. [162]
    Turova, T. S., Diffusion approximation for the components in critical inhomogeneous random graphs of rank 1, preprint (2009), arXiv:0907.0897Google Scholar
  162. [163]
    Turova, T. S., The largest component in subcritical inhomogeneous random graphs, Combin. Probab. Comput., 20 (2011), 131–154.zbMATHMathSciNetGoogle Scholar
  163. [164]
    Watts, D. J., Small worlds. The dynamics of networks between order and randomness. Princeton Studies in Complexity. Princeton University Press, Princeton, NJ, 1999. xvi+262 pp.Google Scholar
  164. [165]
    Watts, D. J., Six degrees. The science of a connected age. W. W. Norton & Co. Inc., New York, 2003. 368 pp.Google Scholar
  165. [166]
    Watts, D. J. and S. H. Strogatz, Collective dynamics of’ small-world’ networks, Nature, 393 (1998), 440–442.Google Scholar
  166. [167]
    Wormald, N. C., The differential equation method for random graph processes and greedy algorithms, in Lectures on approximation and randomized algorithms, pages 73–155. PWN, Warsaw, 1999.Google Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag 2013

Authors and Affiliations

  • Béla Bollobás
    • 1
    • 2
    • 3
  • Oliver Riordan
    • 4
  1. 1.Department of Pure Mathematics and Mathematical StatisticsCambridgeUK
  2. 2.Department of Mathematical SciencesUniversity of MemphisMemphisUSA
  3. 3.London Institute for Mathematical SciencesMayfair, LondonUK
  4. 4.Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations