Advertisement

Erdős on Polynomials

  • Vilmos Totik
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 25)

Abstract

Some results of Erdős on polynomials and some later developments are reviewed. The topics that this survey covers are: discrepancy estimates for zero distribution, orthogonal polynomials, distribution and spacing of their zeros and critical points of polynomials.

Keywords

Unit Circle Orthogonal Polynomial Jordan Curve Equilibrium Measure Discrepancy Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. V. Andrievskii and H-P. Blatt, Discrepancy of signed measures and polynomial approximation, Springer Monographs in Mathematics. Springer-Verlag, New York, 2002.CrossRefzbMATHGoogle Scholar
  2. [2]
    V. V. Andrievskii and H-P. Blatt, Erdős-Turán type theorems on quasiconformal curves and arcs, J. Approx. Theory, 97 (1999), 334–365.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    P. Borwein, Paul Erdős and polynomials, Paul Erdős and his mathematics, I (Budapest, 1999), 161–174, Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Budapest, 2002.Google Scholar
  4. [4]
    N. G. de Bruijn and T. A. Springer, On the zeros of a polynomial and of its derivative, II, Nederl. Akad. Wetensch., 50 (1947) 264–270, = Indagationes Math., 9 (1947), 458–464.Google Scholar
  5. [5]
    T. Erdélyi, Markov-Bernstein type inequalities for polynomials under Erdős type constraints, Paul Erdős and his mathematics, I (Budapest, 1999), 219–239, Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Budapest, 2002.Google Scholar
  6. [6]
    T. Erdélyi, Polynomials with Littlewood-type coefficient constraints, Approximation theory, X (St. Louis, MO, 2001), 153–196, Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN, 2002.Google Scholar
  7. [7]
    P. Erdős, On the uniform distribution of the roots of certain polynomials, Ann. Math., 43 (1942), 59–64.CrossRefGoogle Scholar
  8. [8]
    P. Erdős, On the distribution of the roots of orthogonal polynomials, Proceedings of the Conference on the Constructive Theory of Functions (Approximation Theory) (Budapest, 1969), pp. 145–150. Akadémiai Kiadó, Budapest, 1972.Google Scholar
  9. [9]
    P. Erdős and I. Niven, On the roots of a polynomial and its derivative, Bull. Amer. Math. Soc., 54 (1948), 184–190.CrossRefMathSciNetGoogle Scholar
  10. [10]
    P. Erdős and P. Turán, On interpolation I, Ann. Math., 38 (1937), 142–155.CrossRefGoogle Scholar
  11. [11]
    P. Erdős and P. Turán, On interpolation II, On the distribution of the fundamental points of Lagrange interpolation, Ann. Math., 39 (1938), 703–724.CrossRefGoogle Scholar
  12. [12]
    P. Erdős and P. Turán, On interpolation III, Interpolatory theory of polynomials, Ann. Math., 41 (1940), 510–553.CrossRefGoogle Scholar
  13. [13]
    P. Erdős and P. Turán, On the distribution of certain sequences of points, Ann. Math., 41 (1940), 162–173.CrossRefGoogle Scholar
  14. [14]
    P. Erdős and P. Turán, On a problem in the theory of uniform distribution, I and II, Indag. Math., 10 (1948), 370–378, 406–413.Google Scholar
  15. [15]
    P. Erdős and P. Turán, On the distribution of roots of polynomials, Ann. Math., 51 (1950), 105–119.CrossRefGoogle Scholar
  16. [16]
    A. E. Eremenko and W. Hayman, On the length of lemniscates, Paul Erdős and his mathematics, I (Budapest, 1999), 241–242, Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Budapest, 2002.Google Scholar
  17. [17]
    T. Ganelius, Sequences of analytic functions and their zeros, Ark. Mat., 3 (1953), 1–50.CrossRefMathSciNetGoogle Scholar
  18. [18]
    E. Levin and D. S. Lubinsky, Orthogonal polynomials for exponential weights, CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, 4. Springer-Verlag, New York, 2001.CrossRefzbMATHGoogle Scholar
  19. [19]
    A. L. Levin, and D. S. Lubinsky, Applications of universality limits to zeros and reproducing kernels of orthogonal polynomials, J. Approx. Theory., 150 (2008), 69–95.CrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    D. S. Lubinsky, Strong asymptotics for extremal errors and polynomials associated with Erdős-type weights, Pitman Research Notes in Mathematics Series, 202. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989.Google Scholar
  21. [21]
    D. S. Lubinsky, A new approach to universality limits involving orthogonal polynomials, Ann. of Math., 170(2009), 915–939.CrossRefzbMATHMathSciNetGoogle Scholar
  22. [22]
    D. S. Lubinsky, A taste of Erdős on interpolation, Paul Erdős and his mathematics, I (Budapest, 1999), 423–454, Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Budapest, 2002.Google Scholar
  23. [23]
    S. M. Malamud, Inverse spectral problem for normal matrices and the Gauss-Lucas theorem, Trans. Amer. Math. Soc., 357(2005), 4043–4064.CrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    G. Mastroianni and V. Totik, Uniform spacing of zeros of orthogonal polynomials, Constr. Approx., 32(2010), 181–192.CrossRefzbMATHMathSciNetGoogle Scholar
  25. [25]
    R. Pereira, Differentiators and the geometry of polynomials, J. Math. Anal. Appl., 285(2003), 336–348.CrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    E. A. Rakhmanov, On the asymptotics of the ratio of orthogonal polynomials, Math. USSR Sb., 32 (1977), 199–213.CrossRefzbMATHGoogle Scholar
  27. [27]
    E. A. Rakhmanov, The asymptotic behavior of the ratio of orthogonal polynomials. II. (Russian) Mat. Sb. (N.S.) 118(160)(1982), 104–117.MathSciNetGoogle Scholar
  28. [28]
    T. Ransford, Potential Theory in the Complex plane, Cambridge University Press, Cambridge, 1995.CrossRefzbMATHGoogle Scholar
  29. [29]
    B. Simon, Two extensions of Lubinsky’s universality theorem, J. D’Analyse Math., 105(2008), 345–362.CrossRefzbMATHGoogle Scholar
  30. [30]
    H. Stahl and V. Totik, General Orthogonal Polynomials Encyclopedia of Mathematics, 43, Cambridge University Press, New York 1992Google Scholar
  31. [31]
    V. Totik, Universality and fine zero spacing on general sets, Arkiv för Math., 47(2009), 361–391.CrossRefzbMATHMathSciNetGoogle Scholar
  32. [32]
    V. Totik and with T. Varga, Nonsymmetric fast decreasing polynomials and applications, J. Math. Anal. Appl., 394(2012), 378–390.Google Scholar
  33. [34]
    P. Vértesi, On the Lebesgue function and Lebesgue constant: A tribute to Paul Erdős, Paul Erdős and his mathematics, I (Budapest, 1999), 705–728, Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Budapest, 2002.Google Scholar
  34. [35]
    P. Vértesi, Paul Erdős and interpolation: problems, results and new developments, Erdős Centennial (Budapest, 2013), 711–730, Bolyai Soc. Math. Stud., 25, János Bolyai Math. Soc., Budapest, 2013.Google Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag 2013

Authors and Affiliations

  • Vilmos Totik
    • 1
    • 2
  1. 1.Bolyai Institute, Analysis Research Group of the Hungarian Academy os SciencesUniversity of SzegedSzegedHungary
  2. 2.Department of Mathematics and StatisticsUniversity of South FloridaTampaUSA

Personalised recommendations