Advertisement

Some of Erdős’ Unconventional Problems in Number Theory, Thirty-four Years Later

  • Gérald Tenenbaum
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 25)

Abstract

There are many ways to recall Paul Erdős’ memory and his special way of doing mathematics. Ernst Straus described him as “the prince of problem solvers and the absolute monarch of problem posers”. Indeed, those mathematicians who are old enough to have attended some of his lectures will remember that, after his talks, chairmen used to slightly depart from standard conduct, not asking if there were any questions but if there were any answers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Ahlswede & L.H. Khachatrian, Density inequalities for sets of multiples, J. Number Theory 55 no 2 (1995), 170–180.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    A. Balog, On triplets with descending largest prime factors, Studia Sci. Math. Hungar. 38 (2001), 45–50.zbMATHMathSciNetGoogle Scholar
  3. [3]
    F. A. Behrend, Three reviews; of papers by Chowla, Davenport and Erdős, Jahrbuch über die Forschritte der Mathematik 60 (1935), 146–149.Google Scholar
  4. [4]
    F. A. Behrend, Generalizations of an inequality of Heilbronn and Rohrbach, Bull. Amer. Math. Soc. 54 (1948), 681–684.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    A. S. Besicovitch, On the density of certain sequences, Math. Annalen 110 (1934), 336–341.CrossRefMathSciNetGoogle Scholar
  6. [6]
    R. de la Bretèche, C. Pomerance & G. Tenenbaum, On products of ratios of consecutive integers, Ramanujan J. 9 (2005), 131–138.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    R. de la Bretèche & G. Tenenbaum, Sur les lois locales de la répartition du k-ième diviseur d’un entier, Proc. London Math. Soc. (3) 84 (2002), 289–323.CrossRefGoogle Scholar
  8. [8]
    R. de la Bretèche & G. Tenenbaum, Oscillations localisées sur les diviseurs, J. London Math. Soc. (2) 85 (2012), 669–693.CrossRefGoogle Scholar
  9. [9]
    R. de la Bretèche & G. Tenenbaum, Moyennes de fonctions arithmétiques de formes binaires, Mathematika 58 (2012), 290–304.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    R. de la Bretèche & G. Tenenbaum, Conjecture de Manin pour certaines surfaces de Châtelet, Inst. Math. Jussieu (2013), 1–61.Google Scholar
  11. [11]
    S. Chowla, On abundant numbers, J. Indian Math. Soc. (2) 1 (1934), 41–44.Google Scholar
  12. [12]
    H. Davenport, Über numeri abundantes, Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl. 26–29 (1933), 830–837.Google Scholar
  13. [13]
    H. Davenport & P. Erdős, On sequences of positive integers, Acta Arith. 2 (1937), 147–151.Google Scholar
  14. [14]
    H. Davenport & P. Erdős, On sequences of positive integers, J. Indian Math. Soc. 15 (1951), 19–24.zbMATHMathSciNetGoogle Scholar
  15. [15]
    J.-M. De Koninck & G. Tenenbaum, Sur la loi de répartition du k-ième facteur premier d’un entier, Math. Proc. Camb. Phil. Soc. 133 (2002), 191–204.CrossRefGoogle Scholar
  16. [16]
    P. Erdős, On the density of the abundant numbers, J. London Math. Soc. 9, no 4 (1934), 278–282.CrossRefGoogle Scholar
  17. [17]
    P. Erdős, On the normal number of prime factors of p — 1 and some related problems concerning Euler’s φ-function, Quart. J. Math. (Oxford) 6 (1935), 205–213.CrossRefGoogle Scholar
  18. [18]
    P. Erdős, A generalization of a theorem of Besicovitch, J. London Math. Soc. 11 (1936), 92–98.CrossRefGoogle Scholar
  19. [19]
    P. Erdős, Some remarks on Euler’s φ-function and some related problems, Bull. Amer. Math. Soc. 51 (1945), 540–544.CrossRefMathSciNetGoogle Scholar
  20. [20]
    P. Erdős, On the density of some sequences of integers, Bull. Amer. Math Soc. 54 (1948), 685–692.CrossRefMathSciNetGoogle Scholar
  21. [21]
    P. Erdős, On some applications of probability to analysis and number theory, J. London Math. Soc. 39 (1964), 692–696.CrossRefMathSciNetGoogle Scholar
  22. [22]
    P. Erdős, On the distribution of prime divisors, Aequationes Math. 2, (1969), 177–183.CrossRefMathSciNetGoogle Scholar
  23. [23]
    P. Erdős, Problem 218 and solution, Canad. Math. Bull. 17 (1974), 621–622.Google Scholar
  24. [24]
    P. Erdős, Some unconventional problems in number theory, Astérique 61 (1979), 73–82, Soc. math. France.Google Scholar
  25. [25]
    P. Erdős & R. R. Hall, On the values of Euler’s φ-function, Acta Arith. 22 (1973), 201–206.MathSciNetGoogle Scholar
  26. [26]
    P. Erdős and R. R. Hall, Distinct values of Euler’s φ-function, Mathematika 23 (1976), 1–3.CrossRefMathSciNetGoogle Scholar
  27. [27]
    P. Erdős & R. R. Hall, The propinquity of divisors, Bull. Lodon Math. Soc. 11 (1979), 304–307.CrossRefGoogle Scholar
  28. [28]
    P. Erdős & M. Kac, The Gaussian law of errors in the theory of additive number theoretic functions, Amer. J. Math. 62 (1940), 738–742.CrossRefMathSciNetGoogle Scholar
  29. [29]
    P. Erdős, R. R. Hall & G. Tenenbaum, On the densities of sets of multiples, J. reine angew. Math. 454 (1994), 119–141.MathSciNetGoogle Scholar
  30. [30]
    P. Erdős & J.-L. Nicolas, Répartition des nombres superabondants, Bull. Soc. Math. France 103 (1975), 65–90.MathSciNetGoogle Scholar
  31. [31]
    P. Erdős & J.-L. Nicolas, Méthodes probabilistes et combinatoires en théorie des nombres, Bull. sc. math. (2) 100 (1976), 301–320.Google Scholar
  32. [32]
    P. Erdős & C. Pomerance, On the largest prime factors of n and n + 1, Aequationes Math. 17 (1978), no. 2–3, 311–321.CrossRefMathSciNetGoogle Scholar
  33. [33]
    P. Erdős & G. Tenenbaum, Sur la structure de la suite des diviseurs d’un entier, Ann. Inst. Fourier (Grenoble) 31, 1 (1981), 17–37.CrossRefMathSciNetGoogle Scholar
  34. [34]
    P. Erdős & G. Tenenbaum, Sur les diviseurs consécutifs d’un entier, Bull. Soc. Math. de France 111 (1983), 125–145.Google Scholar
  35. [35]
    P. Erdős & G. Tenenbaum, Sur les densités de certaines suites d’entiers, Proc. London Math. Soc., (3) 59 (1989), 417–438.CrossRefGoogle Scholar
  36. [36]
    P. Erdős & G. Tenenbaum, Sur les fonctions arithmétiques liées aux diviseurs consécutifs, J. Number Theory, 31 (1989), 285–311.CrossRefMathSciNetGoogle Scholar
  37. [37]
    K. Ford, The distribution of totients, Ramanujan J. 2 (1998), nos 1–2, 67–151.CrossRefzbMATHMathSciNetGoogle Scholar
  38. [38]
    K. Ford, The distribution of integers with a divisor in a given interval. Ann. of Math. (2) 168, no 2 (2008), 367–433.CrossRefGoogle Scholar
  39. [39]
    K. Ford, S. V. Konyagin & F. Luca, Prime chains and Pratt trees, Geom. Funct. Anal. 20 no 5 (2010), 1231–1258.CrossRefzbMATHMathSciNetGoogle Scholar
  40. [40]
    H. Halberstam & H.-E. Richert, Sieve Methods, Academic Press, London, New York, San Francisco, 1974.zbMATHGoogle Scholar
  41. [41]
    R. R. Hall, Sets of multiples and Behrend sequences, A tribute to Paul Erdős, 249–258, Cambridge Univ. Press, Cambridge, 1990.CrossRefGoogle Scholar
  42. [42]
    R. R. Hall, Sets of multiples, Cambridge Tracts in Mathematics, 118, Cambridge University Press, Cambridge, 1996.CrossRefzbMATHGoogle Scholar
  43. [43]
    R. R. Hall, Private communication, November 11, 2012.Google Scholar
  44. [44]
    R. R. Hall & G. Tenenbaum, On the average and normal orders of Hooley’s Δ-function, J. London Math. Soc (2) 25 (1982), 392–406.CrossRefMathSciNetGoogle Scholar
  45. [45]
    R. R. Hall & G. Tenenbaum, Les ensembles de multiples et la densité divisorielle, J. Number Theory 22 (1986), 308–333.CrossRefzbMATHMathSciNetGoogle Scholar
  46. [46]
    R. R. Hall & G. Tenenbaum, Divisors, Cambridge tracts in mathematics 90, Cambridge University Press (1988, paperback ed. 2008).Google Scholar
  47. [47]
    R. R. Hall & G. Tenenbaum, On Behrend sequences, Math. Proc. Camb. Phil. Soc. 112 (1992), 467–482.CrossRefzbMATHMathSciNetGoogle Scholar
  48. [48]
    K. Henriot, Nair-Tenenbaum bounds uniform with respect to the discriminant, Math. Proc. Camb. Phil. Soc. 152 (2012), no 3, 405–424.CrossRefzbMATHMathSciNetGoogle Scholar
  49. [49]
    A. Hildebrand, On a conjecture of Balog, Proc. Amer. Math. Soc. 9, no 4 (1985), 517–523.CrossRefMathSciNetGoogle Scholar
  50. [50]
    C. Hooley, A new technique and its applications to the theory of numbers, Proc. London Math. Soc. (3) 38 (1979), 115–151.CrossRefMathSciNetGoogle Scholar
  51. [51]
    S. Kerner & G. Tenenbaum, Sur la répartition divisorielle normale de θd (mod 1), Math. Proc. Camb. Phil. Soc. 137 (2004), 255–272.CrossRefzbMATHMathSciNetGoogle Scholar
  52. [52]
    P. Lévy, Fr Théorie de l’addition des variables aléatoires, Gauthier-Villars, Paris (1937, 2nd ed. 1954).Google Scholar
  53. [53]
    H. Maier, On the Möbius function, Trans. Amer. Math. Soc. 301, no 2 (1987), 649–664.zbMATHMathSciNetGoogle Scholar
  54. [54]
    H. Maier & C. Pomerance, On the number of distinct values of Euler’s φ-function, Acta Arith. 49 (1988), 263–275.zbMATHMathSciNetGoogle Scholar
  55. [55]
    H. Maier & G. Tenenbaum, On the set of divisors of an integer, Invent. Math. 76 (1984), 121–128.CrossRefzbMATHMathSciNetGoogle Scholar
  56. [56]
    H. Maier & G. Tenenbaum, On the normal concentration of divisors, 2, Math. Proc. Camb. Phil. Soc. 147 no 3 (2009), 593–614.CrossRefMathSciNetGoogle Scholar
  57. [57]
    M. Nair & G. Tenenbaum, Short sums of certain arithmetic functions, Acta Math. 180, (1998), 119–144.CrossRefzbMATHMathSciNetGoogle Scholar
  58. [58]
    S. Pillai, On some functions connected with φ(n), Bull. Amer. Math. Soc. 35 (1929), 832–836.CrossRefzbMATHMathSciNetGoogle Scholar
  59. [59]
    G. Polya & G. Szegő, Problems and theorems in analysis, II, Classics in Mathematics, Springer-Verlag, Berlin, 1998.zbMATHGoogle Scholar
  60. [60]
    C. Pomerance, On the distribution of the values of Euler’s function, Acta Arith. 47 (1986), 63–70.zbMATHMathSciNetGoogle Scholar
  61. [61]
    A. Raouj, Sur la densité de certains ensembles de multiples, I, II, Acta Arith. 69, no 2 (1995), 121–152, 171–188.zbMATHMathSciNetGoogle Scholar
  62. [62]
    A. Raouj, A. Stef & G. Tenenbaum, Mesures quadratiques de la proximité des diviseurs, Math. Proc. Camb. Phil. Soc. 150 (2011), 73–96.CrossRefzbMATHMathSciNetGoogle Scholar
  63. [63]
    O. Robert, Sur le nombre des entiers représentables comme somme de trois puissances, Acta Arith. 149 no 1 (2011), 1–21.CrossRefzbMATHMathSciNetGoogle Scholar
  64. [64]
    I.Z. Ruzsa & G. Tenenbaum, A note on Behrend sequences, Acta Math. Hung. 72,no 4 (1996), 327–337.CrossRefzbMATHMathSciNetGoogle Scholar
  65. [65]
    A. Stef, L’ensemble exceptionnel dans la conjecture d’Erdős concernant la proximité des diviseurs, Thèse de doctorat de l’Université Nancy 1, UFR STMIA, juin 1992.Google Scholar
  66. [66]
    G. Tenenbaum, Sur la densité divisorielle d’une suite d’entiers, J. Number Theory 15, no 3 (1982), 331–346.CrossRefzbMATHMathSciNetGoogle Scholar
  67. [67]
    G. Tenenbaum, Sur la probabilité qu’un entier possède un diviseur dans un intervalle donné, Compositio Math. 51 (1984), 243–263.zbMATHMathSciNetGoogle Scholar
  68. [68]
    G. Tenenbaum, Sur la concentration moyenne des diviseurs, Comment. Math. Helvetici 60 (1985), 411–428.CrossRefzbMATHMathSciNetGoogle Scholar
  69. [69]
    G. Tenenbaum, Fonctions Φ de Hooley et applications, Séminaire de Théorie des nombres, Paris 1984–85, Prog. Math. 63 (1986), 225–239.MathSciNetGoogle Scholar
  70. [70]
    G. Tenenbaum, Un problème de probabilité conditionnelle en Arithmétique, Acta Arith. 49 (1987), 165–187.zbMATHMathSciNetGoogle Scholar
  71. [71]
    G. Tenenbaum, Sur une question d’Erdős et Schinzel, II, Inventiones Math. 99 (1990), 215–224.CrossRefzbMATHMathSciNetGoogle Scholar
  72. [72]
    G. Tenenbaum, On block Behrend sequences, Math. Proc. Camb. Phil. Soc. 120 (1996), 355–367.CrossRefzbMATHMathSciNetGoogle Scholar
  73. [73]
    G. Tenenbaum, Uniform distribution on divisors and Behrend sequences, L’Enseignement Mathématique 42 (1996), 153–197.zbMATHMathSciNetGoogle Scholar
  74. [74]
    G. Tenenbaum, Fr Introduction à la théorie analytique et probabiliste des nombres, third ed., coll. Échelles, Berlin, 2008, 592 pp.Google Scholar
  75. [75]
    R. C. Vaughan, Sur le problème de Waring pour les cubes, C.R. Acad. Sci. Paris Sér. I Math. 301, no 6 (1985), 253–255.zbMATHMathSciNetGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag 2013

Authors and Affiliations

  • Gérald Tenenbaum
    • 1
  1. 1.Institut Élie CartanUniversité de LorraineVandœuvre-lès-Nancy CedexFrance

Personalised recommendations