Extremal Results in Random Graphs

  • Vojtěch Rödl
  • Mathias Schacht
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 25)


According to Paul Erdős au][Some notes on Turán’s mathematical work, J. Approx. Theory 29 (1980), page 4]_it was Paul Turán who “created the area of extremal problems in graph theory”. However, without a doubt, Paul Erdős popularized extremal combinatorics, by his many contributions to the field, his numerous questions and conjectures, and his influence on discrete mathematicians in Hungary and all over the world. In fact, most of the early contributions in this field can be traced back to Paul Erdős, Paul Turán, as well as their collaborators and students. Paul Erdős also established the probabilistic method in discrete mathematics, and in collaboration with Alfréd Rényi, he started the systematic study of random graphs. We shall survey recent developments at the interface of extremal combinatorics and random graph theory.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Alon and F. R. K. Chung, Explicit construction of linear sized tolerant networks, Discrete Math., 72 (1988), no. 1–3, 15–19.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    N. Alon, R. A. Duke, H. Lefmann, V. Rödl, and R. Yuster, The algorithmic aspects of the regularity lemma, J. Algorithms, 16 (1994), no. 1, 80–109.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    N. Alon and J. H. Spencer, The probabilistic method, third ed., Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons Inc., Hoboken, NJ, 2008, With an appendix on the life and work of Paul Erdős.Google Scholar
  4. [4]
    L. Babai, M. Simonovits, and J. Spencer, Extremal subgraphs of random graphs, J. Graph Theory, 14 (1990), no. 5, 599–622.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    J. Balogh, B. Bollobás, and M. Simonovits, The number of graphs without forbidden subgraphs, J. Combin. Theory Ser. B, 91 (2004), no. 1, 1–24.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    -, The typical structure of graphs without given excluded subgraphs, Random Structures Algorithms, 34 (2009), no. 3, 305–318.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    -, The fine structure of octahedron-free graphs, J. Combin. Theory Ser. B, 101 (2011), no. 2, 67–84.Google Scholar
  8. [10]
    B. Bollobás, On complete subgraphs of different orders, Math. Proc. Cambridge Philos. Soc., 79 (1976), no. 1, 19–24.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [11]
    -, Relations between sets of complete subgraphs, Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), Congressus Numerantium, No. XV, Utilitas Math., Winnipeg, Man., 1976, pp. 79–84.Google Scholar
  10. [12]
    -, Extremal graph theory, London Mathematical Society Monographs, vol. 11, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1978.Google Scholar
  11. [13]
    -, Modern graph theory, Graduate Texts in Mathematics, vol. 184, Springer-Verlag, New York, 1998.CrossRefGoogle Scholar
  12. [14]
    -, Random graphs, second ed., Cambridge Studies in Advanced Mathematics, vol. 73, Cambridge University Press, Cambridge, 2001.CrossRefGoogle Scholar
  13. [15]
    B. Bollobás and A. Thomason, Threshold functions, Combinatorica 7 (1987), no. 1, 35–38.CrossRefzbMATHMathSciNetGoogle Scholar
  14. [16]
    J. A. Bondy and U. S. R. Murty, Graph theory, Graduate Texts in Mathematics, vol. 244, Springer, New York, 2008.CrossRefzbMATHGoogle Scholar
  15. [17]
    G. Brightwell, K. Panagiotou, and A. Steger, Extremal subgraphs of random graphs, Random Structures Algorithms, 41 (2012), no. 2, 147–178.CrossRefzbMATHMathSciNetGoogle Scholar
  16. [18]
    W. G. Brown, P. Erdős, and V. T. Sós, Some extremal problems on r-graphs, New directions in the theory of graphs (Proc. Third Ann Arbor Conf., Univ. Michigan, Ann Arbor, Mich, 1971), Academic Press, New York, 1973, pp. 53–63.Google Scholar
  17. [19]
    F. R. K. Chung and R. L. Graham, Sparse quasi-random graphs, Combinatorica 22 (2002), no. 2, 217–244, Special issue: Paul Erdős and his mathematics.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [20]
    F. R. K. Chung, R. L. Graham, and R. M. Wilson, Quasi-random graphs, Combinatorica, 9 (1989), no. 4, 345–362.CrossRefzbMATHMathSciNetGoogle Scholar
  19. [24]
    D. Conlon, H. Hàn, Y. Person, and M. Schacht, Weak quasi-randomness for uniform hypergraphs, Random Structures Algorithms, 40 (2012), no. 1, 1–38.CrossRefzbMATHMathSciNetGoogle Scholar
  20. [25]
    D. Dellamonica, Jr. and V. Rödl, Hereditary quasirandom properties of hypergraphs, Combinatorica, 31 (2011), no. 2, 165–182.CrossRefzbMATHMathSciNetGoogle Scholar
  21. [27]
    R. Diestel, Graph theory, fourth ed., Graduate Texts in Mathematics, vol. 173, Springer, Heidelberg, 2010.CrossRefGoogle Scholar
  22. [28]
    P. Erdős, On sequences of integers no one of which divides the product of two others and on some related problems, Mitt. Forsch.-Inst. Math. und Mech. Univ. Tomsk, 2 (1938), 74–82.Google Scholar
  23. [29]
    -, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292–294.CrossRefMathSciNetGoogle Scholar
  24. [30]
    -, Some theorems on graphs, Riveon Lematematika, 9 (1955), 13–17.MathSciNetGoogle Scholar
  25. [31]
    -, Graph theory and probability, Canad. J. Math., 11 (1959), 34–38.CrossRefMathSciNetGoogle Scholar
  26. [32]
    -, On a theorem of Rademacher-Turán, Illinois J. Math. 6 (1962), 122–127.MathSciNetGoogle Scholar
  27. [33]
    -, On the number of complete subgraphs contained in certain graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl., 7 (1962), 459–464.Google Scholar
  28. [34]
    -, Some recent results on extremal problems in graph theory. Results, Theory of Graphs (Internat. Sympos., Rome, 1966), Gordon and Breach, New York, 1967, pp. 117–123 (English); pp. 124–130 (French).Google Scholar
  29. [35]
    -, On some of my conjectures in number theory and combinatorics, Proceedings of the fourteenth Southeastern conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1983), vol. 39, 1983, pp. 3–19.Google Scholar
  30. [36]
    P. Erdős, P. Frankl, and V. Rödl, The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent, Graphs Combin., 2 (1986), no. 2, 113–121.MathSciNetGoogle Scholar
  31. [37]
    P. Erdős, D. J. Kleitman, and B. L. Rothschild, Asymptotic enumeration of K n-free graphs, Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo II, Accad. Naz. Lincei, Rome, 1976, pp. 19–27. Atti dei Convegni Lincei, No. 17.Google Scholar
  32. [38]
    P. Erdős and A. Rényi, On random graphs. I, Publ. Math. Debrecen 6 (1959), 290–297.MathSciNetGoogle Scholar
  33. [39]
    P. Erdős and M. Simonovits, An extremal graph problem, Acta Math. Acad. Sci. Hungar., 22 (1971/72), 275–282.CrossRefMathSciNetGoogle Scholar
  34. [40]
    P. Erdős and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc., 52 (1946), 1087–1091.CrossRefMathSciNetGoogle Scholar
  35. [41]
    P. Erdős and G. Szekeres, A combinatorial problem in geometry, Compositio Math., 2 (1935), 463–470.MathSciNetGoogle Scholar
  36. [42]
    P. Erdős and P. Turán, On some sequences of integers., J. Lond. Math. Soc., 11 (1936), 261–264.CrossRefGoogle Scholar
  37. [43]
    P. Frankl and V. Rödl, Large triangle-free subgraphs in graphs without K 4, Graphs Combin., 2 (1986), no. 2, 135–144.zbMATHMathSciNetGoogle Scholar
  38. [44]
    P. Frankl, V. Rödl, and R. M. Wilson, The number of submatrices of a given type in a Hadamard matrix and related results, J. Combin. Theory Ser. B 44 (1988), no. 3, 317–328.CrossRefzbMATHMathSciNetGoogle Scholar
  39. [45]
    E. Friedgut, V. Rödl, and M. Schacht, Ramsey properties of random discrete structures, Random Structures Algorithms, 37 (2010), no. 4, 407–436.CrossRefzbMATHMathSciNetGoogle Scholar
  40. [46]
    Z. Füredi, Random Ramsey graphs for the four-cycle, Discrete Math. 126 (1994), no. 1–3, 407–410.CrossRefzbMATHMathSciNetGoogle Scholar
  41. [47]
    -, Extremal hypergraphs and combinatorial geometry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) (Basel), Birk-häuser, 1995, pp. 1343–1352.Google Scholar
  42. [48]
    St. Gerke, Random graphs with constraints, Habilitationsschrift, Institut für Informatik, Technische Universität München, 2005.Google Scholar
  43. [49]
    St. Gerke, Y. Kohayakawa, V. Rödl, and A. Steger, Small subsets inherit sparse ε-regularity, J. Combin. Theory Ser. B, 97 (2007), no. 1, 34–56.CrossRefzbMATHMathSciNetGoogle Scholar
  44. [50]
    St. Gerke, M. Marciniszyn, and A. Steger, A probabilistic counting lemma for complete graphs, Random Structures Algorithms, 31 (2007), no. 4, 517–534.CrossRefzbMATHMathSciNetGoogle Scholar
  45. [51]
    St. Gerke, H. J. Prömel, T. Schickinger, A. Steger, and A. Taraz, K 4-free subgraphs of random graphs revisited, Combinatorica 27 (2007), no. 3, 329–365.CrossRefzbMATHMathSciNetGoogle Scholar
  46. [52]
    St. Gerke, T. Schickinger, and A. Steger, K5-free subgraphs of random graphs, Random Structures Algorithms, 24 (2004), no. 2, 194–232.CrossRefzbMATHMathSciNetGoogle Scholar
  47. [53]
    St. Gerke and A. Steger, The sparse regularity lemma and its applications, Surveys in combinatorics 2005, London Math. Soc. Lecture Note Ser., vol. 327, Cambridge Univ. Press, Cambridge, 2005, pp. 227–258.Google Scholar
  48. [54]
    -, A characterization for sparse ε-regular pairs, Electron. J. Combin., 14 (2007), no. 1, Research Paper 4, 12 pp. (electronic).Google Scholar
  49. [55]
    R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey theory, second ed., Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons Inc., New York, 1990, A Wiley-Interscience Publication.zbMATHGoogle Scholar
  50. [56]
    P. E. Haxell, Y. Kohayakawa, and T. Łuczak, Turán’s extremal problem in random graphs: forbidding even cycles, J. Combin. Theory Ser. B, 64 (1995), no. 2, 273–287.CrossRefzbMATHMathSciNetGoogle Scholar
  51. [57]
    -, Turán’s extremal problem in random graphs: forbidding odd cycles, Combinatorica, 16 (1996), no. 1, 107–122.CrossRefzbMATHMathSciNetGoogle Scholar
  52. [58]
    S. Janson, T. Łuczak, and A. Rucinńki, Random graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000.CrossRefzbMATHGoogle Scholar
  53. [59]
    N. G. Khadzhiivanov and V. S. Nikiforov, The Nordhaus-Stewart-Moon-Moser inequality, Serdica, 4 (1978), no. 4, 344–350.zbMATHMathSciNetGoogle Scholar
  54. [60]
    -, Solution of the problem of P. Erdős on the number of triangles in graphs with n vertices and [n 2/4] + l edges, C. R. Acad. Bulgare Sci., 34 (1981), no. 7, 969–970.zbMATHMathSciNetGoogle Scholar
  55. [61]
    Y. Kohayakawa, Szemerédi’s regularity lemma for sparse graphs, Foundations of computational mathematics (Rio de Janeiro, 1997), Springer, Berlin, 1997, pp. 216–230. MR 1661982 (99g:05145)Google Scholar
  56. [62]
    Y. Kohayakawa and B. Kreuter, Threshold functions for asymmetric Ramsey properties involving cycles, Random Structures Algorithms, 11 (1997), no. 3, 245–276.CrossRefzbMATHMathSciNetGoogle Scholar
  57. [63]
    Y. Kohayakawa, B. Kreuter, and A. Steger, An extremal problem for random graphs and the number of graphs with large even-girth, Combinatorica 18 (1998), no. 1, 101–120.CrossRefzbMATHMathSciNetGoogle Scholar
  58. [64]
    Y. Kohayakawa, T. Łuczak, and V. Rödl, Arithmetic progressions of length three in subsets of a random set, Acta Arith., 75 (1996), no. 2, 133–163.zbMATHMathSciNetGoogle Scholar
  59. [65]
    -, On K 4-free subgraphs of random graphs, Combinatorica 17 (1997), no. 2, 173–213.CrossRefzbMATHMathSciNetGoogle Scholar
  60. [66]
    Y. Kohayakawa and V. Rödl, Regular pairs in sparse random graphs. I, Random Structures Algorithms, 22 (2003), no. 4, 359–434. MR 1980964 (2004b:05187)CrossRefzbMATHMathSciNetGoogle Scholar
  61. [67]
    -, Szemerédi’s regularity lemma and quasi-randomness, Recent advances in algorithms and combinatorics, CMS Books Math./Ouvrages Math. SMC, vol. 11, Springer, New York, 2003, pp. 289–351.Google Scholar
  62. [68]
    Y. Kohayakawa, V. Rödl, and M. Schacht, The Turán theorem for random graphs, Combin. Probab. Comput., 13 (2004), no. 1, 61–91.CrossRefzbMATHMathSciNetGoogle Scholar
  63. [70]
    Ph. G. Kolaitis, H. J. Prömel, and B. L. Rothschild, Asymptotic enumeration and a 0–1 law for m-clique free graphs, Bull. Amer. Math. Soc. (N.S.), 13 (1985), no. 2, 160–162.CrossRefzbMATHMathSciNetGoogle Scholar
  64. [71]
    -, K l+1-free graphs: asymptotic structure and a 0–1 law, Trans. Amer. Math. Soc., 303 (1987), no. 2, 637–671.zbMATHMathSciNetGoogle Scholar
  65. [72]
    J. Komlós, A. Shokoufandeh, M. Simonovits, and E. Szemerédi, The regularity lemma and its applications in graph theory, Theoretical aspects of computer science (Tehran, 2000), Lecture Notes in Comput. Sci., vol. 2292, Springer, Berlin, 2002, pp. 84–112.CrossRefGoogle Scholar
  66. [73]
    J. Komlós and M. Simonovits, Szemerédi’s regularity lemma and its applications in graph theory, Combinatorics, Paul Erdős is eighty, Vol. 2 (Keszthely, 1993), Bolyai Soc. Math. Stud., vol. 2, János Bolyai Math. Soc, Budapest, 1996, pp. 295–352.Google Scholar
  67. [74]
    T. Kövari, V. T. Sós, and P. Turán, On a problem of K. Zarankiewicz, Colloquium Math., 3 (1954), 50–57.zbMATHMathSciNetGoogle Scholar
  68. [75]
    M. Krivelevich and B. Sudakov, Pseudo-random graphs, More sets, graphs and numbers, Bolyai Soc. Math. Stud., vol. 15, Springer, Berlin, 2006, pp. 199–262.CrossRefGoogle Scholar
  69. [76]
    L. Lovász and M. Simonovits, On the number of complete subgraphs of a graph, Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975) (Winnipeg, Man.), Utilitas Math., 1976, pp. 431–441. Congressus Numerantium, No. XV.Google Scholar
  70. [77]
    -, On the number of complete subgraphs of a graph. II, Studies in pure mathematics, Birkhäuser, Basel, 1983, pp. 459–495.Google Scholar
  71. [78]
    T. ⌊uczak, On triangle-free random graphs, Random Structures Algorithms 16 (2000), no. 3, 260–276.CrossRefMathSciNetGoogle Scholar
  72. [79]
    -, Randomness and regularity, International Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006, pp. 899–909.Google Scholar
  73. [80]
    T. Łuczak, A. Rucinńki, and B. Voigt, Ramsey properties of random graphs, J. Combin. Theory Ser. B, 56 (1992), no. 1, 55–68.CrossRefMathSciNetGoogle Scholar
  74. [81]
    W. Mantel, Vraagstuk XXVIII, Wiskundige Opgaven, 10 (1907), 60–61.zbMATHGoogle Scholar
  75. [82]
    M. Marciniszyn, J. Skokan, R. Spöhel, and A. Steger, Asymmetric Ramsey properties of random graphs involving cliques, Random Structures Algorithms 34 (2009), no. 4, 419–453.CrossRefzbMATHMathSciNetGoogle Scholar
  76. [83]
    J. W. Moon and L. Moser, On a problem of Turán, Magyar Tud. Akad. Mat. Kutato Int. Közl., 7 (1962), 283–286.zbMATHMathSciNetGoogle Scholar
  77. [84]
    V. Nikiforov, The number of cliques in graphs of given order and size, Trans. Amer. Math. Soc., 363 (2011), no. 3, 1599–1618.CrossRefzbMATHMathSciNetGoogle Scholar
  78. [85]
    E. A. Nordhaus and B. M. Stewart, Triangles in an ordinary graph, Canad. J. Math., 15 (1963), 33–41.CrossRefzbMATHMathSciNetGoogle Scholar
  79. [86]
    D. Osthus, H. J. Prömel, and A. Taraz, For which densities are random triangle-free graphs almost surely bipartite?, Combinatorica, 23 (2003), no. 1, 105–150, Paul Erdős and his mathematics (Budapest, 1999).CrossRefzbMATHMathSciNetGoogle Scholar
  80. [87]
    H. J. Prömel and A. Steger, The asymptotic number of graphs not containing a fixed color-critical subgraph, Combinatorica, 12 (1992), no. 4, 463–473.CrossRefzbMATHMathSciNetGoogle Scholar
  81. [88]
    -, On the asymptotic structure of sparse triangle free graphs, J. Graph Theory, 21 (1996), no. 2, 137–151.CrossRefzbMATHMathSciNetGoogle Scholar
  82. [89]
    F. P. Ramsey, On a problem informal logic, Proc. Lond. Math. Soc. (2) 30 (1930), 264–286.CrossRefMathSciNetGoogle Scholar
  83. [91]
    -, Flag algebras, J. Symbolic Logic, 72 (2007), no. 4, 1239–1282.Google Scholar
  84. [92]
    -, On the minimal density of triangles in graphs, Combin. Probab. Comput., 17 (2008), no. 4, 603–618.Google Scholar
  85. [94]
    V. Rödl, On universality of graphs with uniformly distributed edges, Discrete Math., 59 (1986), no. 1–2, 125–134.CrossRefzbMATHMathSciNetGoogle Scholar
  86. [95]
    V. Rödl and A. Rucinńki, Lower bounds on probability thresholds for Ramsey properties, Combinatorics, Paul Erdős is eighty, Vol. 1, Bolyai Soc. Math. Stud., János Bolyai Math. Soc., Budapest, 1993, pp. 317–346.Google Scholar
  87. [96]
    -, Random graphs with monochromatic triangles in every edge coloring, Random Structures Algorithms, 5 (1994), no. 2, 253–270.CrossRefzbMATHMathSciNetGoogle Scholar
  88. [97]
    -, Threshold functions for Ramsey properties, J. Amer. Math. Soc., 8 (1995), no. 4, 917–942.CrossRefzbMATHMathSciNetGoogle Scholar
  89. [98]
    V. Rödl and M. Schacht, Regularity lemmas for graphs, Fete of combinatorics and computer science, Bolyai Soc. Math. Stud., vol. 20, János Bolyai Math. Soc., Budapest, 2010, pp. 287–325.Google Scholar
  90. [99]
    I. Z. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, Colloq. Math. Soc. János Bolyai, vol. 18, North-Holland, Amsterdam, 1978, pp. 939–945.Google Scholar
  91. [103]
    A. Shapira, Quasi-randomness and the distribution of copies of a fixed graph, Combinatorica, 28 (2008), no. 6, 735–745.CrossRefzbMATHMathSciNetGoogle Scholar
  92. [104]
    M. Simonovits, A method for solving extremal problems in graph theory, stability problems, Theory of Graphs (Proc. Colloq., Tihany, 1966), Academic Press, New York, 1968, pp. 279–319.Google Scholar
  93. [105]
    -, Extermal graph problems with symmetrical extremal graphs. Additional chromatic conditions, Discrete Math., 7 (1974), 349–376.CrossRefzbMATHMathSciNetGoogle Scholar
  94. [106]
    -, The extremal graph problem of the icosahedron, J. Combinatorial Theory Ser. B, 17 (1974), 69–79.Google Scholar
  95. [107]
    M. Simonovits and V. T. Sós, Hereditarily extended properties, quasi-random graphs and not necessarily induced subgraphs, Combinatorica 17 (1997), no. 4, 577–596.CrossRefzbMATHMathSciNetGoogle Scholar
  96. [108]
    A. Steger, On the evolution of triangle-free graphs, Combin. Probab. Comput. 14 (2005), no. 1–2, 211–224.CrossRefzbMATHMathSciNetGoogle Scholar
  97. [109]
    T. Szabó and V. H. Vu, Turán’s theorem in sparse random graphs, Random Structures Algorithms, 23 (2003), no. 3, 225–234.CrossRefzbMATHMathSciNetGoogle Scholar
  98. [110]
    E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith., 27 (1975), 199–245, Collection of articles in memory of Juriį Vladimirovič Linnik.zbMATHMathSciNetGoogle Scholar
  99. [111]
    -, Regular partitions of graphs, Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), Colloq. Internat. CNRS, vol. 260, CNRS, Paris, 1978, pp. 399–401.Google Scholar
  100. [112]
    A. Thomason, Pseudorandom graphs, Random graphs’ 85 (Poznań, 1985), North-Holland Math. Stud., vol. 144, North-Holland, Amsterdam, 1987, pp. 307–331.Google Scholar
  101. [113]
    -, Random graphs, strongly regular graphs and pseudorandom graphs, Surveys in combinatorics 1987 (New Cross, 1987), London Math. Soc. Lecture Note Ser., vol. 123, Cambridge Univ. Press, Cambridge, 1987, pp. 173–195.Google Scholar
  102. [114]
    P. Turán, Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok, 48 (1941), 436–452.MathSciNetGoogle Scholar
  103. [115]
    R. Yuster, Quasi-randomness is determined by the distribution of copies of a fixed graph in equicardinal large sets, Combinatorica, 30 (2010), no. 2, 239–246.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag 2013

Authors and Affiliations

  • Vojtěch Rödl
    • 1
  • Mathias Schacht
    • 2
  1. 1.Department of Mathematics and Computer ScienceEmory UniversityAtlantaUSA
  2. 2.Fachbereich MathematikUniversität HamburgHamburgGermany

Personalised recommendations