Advertisement

Paul Erdős and the Difference of Primes

  • János Pintz
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 25)

Abstract

In the present work we discuss several problems concerning the difference of primes, primarily regarding the difference of consecutive primes. Most of them were either initiated by Paul Erdős (sometimes with coauthors), or were raised ahead of Erdős; nevertheless he was among those who reached very important results in them (like the problem of the large and small gaps between consecutive primes).

Keywords

Prime Number London Math Prime Divisor Arithmetic Progression Acta Arith 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. J. Backlund, Über die Differenzen zwischen den Zahlen, die zu den ersten n Primzahlen teilerfremd sind. Commentationes in honorem E. L. Lindelöf. Annales Acad. Sci. Fenn. 32 (1929), Nr. 2, 1–9.Google Scholar
  2. [2]
    R. C. Baker, G. Harman, J. Pintz, The difference between consecutive primes, II. Proc. London Math. Soc.(3) 83 (2001), no. 3, 532–562.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    E. Bombieri, On the large sieve. Mathematika 12 (1965), 201–225.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    E. Bombieri, H. Davenport, Small differences between prime numbers. Proc. Roy. Soc. Ser. A 293 (1966), 1–18.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    J. Bourgain, On triples in arithmetic progressions. Geom. Funct. Anal. 9 (1999), no. 5, 968–984.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    J. Bourgain, Roth’s theorem on progressions revisited. J. Anal. Math. 104 (2008), 155–192.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    A. Brauer, H. Zeitz, Über eine zahlentheoretische Behauptung von Legendre. Sber. Berliner Math. Ges. 29 (1930), 116–125.Google Scholar
  8. [8]
    Chen Jing Run, On the representation of a large even integer as the sum of a prime and the product of at most two primes. Kexue Tongbao 17 (1966), 385–386 (Chinese).Google Scholar
  9. [9]
    Chen Jing Run, On the representation of a large even integer as the sum of a prime and the product of at most two primes. Sci. Sinica 16 (1973), 157–176.zbMATHMathSciNetGoogle Scholar
  10. [10]
    J. G. van der Corput, Sur l’hypothése de Goldbach pour presque tous les nombres pairs. Acta Arith. 2 (1937), 266–290.Google Scholar
  11. [11]
    J. G. van der Corput, Über Summen von Primzahlen und Primzahlquadraten. Math. Ann. 116 (1939), 1–50.CrossRefMathSciNetGoogle Scholar
  12. [12]
    H. Cramér, Prime numbers and probability. 8. Skand. Math. Kongr., Stockholm, 1935, 107–115.Google Scholar
  13. [13]
    H. Cramér, On the order of magnitude of the difference between consecutive prime numbers. Acta Arith. 2 (1936), 23–46.Google Scholar
  14. [14]
    N. G. Čudakov, On the density of the set of even numbers which are not representable as a sum of two primes. Izv. Akad. Nauk. SSSR 2 (1938), 25–40.Google Scholar
  15. [15]
    L. E. Dickson, A new extension of Dirichlet’s theorem on prime numbers. Messenger of Math. (2), 33 (1904), 155–161.Google Scholar
  16. [16]
    P. D. T. A. Elliott, H. Halberstam, A conjecture in prime number theory. Symposia Mathematica Vol. 4 (1970) (INDAM, Rome, 1968/69), 59–72, Academic Press, London.Google Scholar
  17. [17]
    P. Erdős, On the difference of consecutive primes. Quart. J. Math. Oxford ser. 6 (1935), 124–128.CrossRefGoogle Scholar
  18. [18]
    P. Erdős, The difference of consecutive primes. Duke Math. J. 6 (1940), 438–441.CrossRefMathSciNetGoogle Scholar
  19. [19]
    P. Erdős, On the difference of consecutive primes. Bull. Amer. Math. Soc. (1948), 885–889.Google Scholar
  20. [20]
    P. Erdős, On a new method in elementary number theory which leads to an elementary proof of the prime number theorem. Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 374–384.CrossRefMathSciNetGoogle Scholar
  21. [21]
    P. Erdős, Problems and results on the differences of consecutive primes. Publ. Math. Debrecen 1 (1949), 33–37.MathSciNetGoogle Scholar
  22. [22]
    P. Erdős, Some problems on the distribution of prime numbers. Teoria dei Numeri, Math. Congr. Varenna, 1954, 8 pp., 1955.Google Scholar
  23. [23]
    P. Erdős, Some problems on Consecutive Prime Numbers. Mathematika 19 (1972), 91–95.CrossRefMathSciNetGoogle Scholar
  24. [24]
    P. Erdős, Résultats et problèmes en théorie des nombres. Séminaire Delonge-Pisot-Poitou (14e annèe: 1972/73), Théorie des nombres, Fasc. 2. Exp. No. 24, 7 pp. Sécretariat Mathématique, Paris, 1973.Google Scholar
  25. [25]
    P. Erdős, Problems and results on number theoretic properties of consecutive integers and related questions. Proceedings of the Fifth Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1975), Congress Numer. XVI, pp. 25–44, Utilitas Math., Winnipeg, Man., 1976.Google Scholar
  26. [26]
    P. Erdős, Problems in number theory and combinatorics. Proceedings of the Sixth Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1976), Congress. Numer. XVIII, pp. 35–58, Utilitas Math., Winnipeg, Man., 1977.Google Scholar
  27. [27]
    P. Erdős, Some personal reminiscences of the mathematical work of Paul Turán. Acta Arith. 37 (1980), 3–8.Google Scholar
  28. [28]
    P. Erdős, Many old and on some new problems of mine in number theory, Proceedings of the Tenth Manitoba Conference on Numerical Mathematics and Computing, Vol. I (Univ Manitoba, Winnipeg, Man., 1980), Congress. Numer. 30 (1981), 3–27.Google Scholar
  29. [29]
    P. Erdős, Some problems on Number Theory, in: Analytic and elementary number theory (Marseille, 1983). Publ. Math. Orsay, 86-1, pp. 53–67, Univ. Paris XI, Orsay, 1986.Google Scholar
  30. [30]
    P. Erdős, L. Mirsky, The distribution of values of the divisor function d(n). Proc. London Math. Soc. (3) 2 (1952), 257–271.CrossRefMathSciNetGoogle Scholar
  31. [31]
    P. Erdős, P. Turán, On some sequences of integers. J. London Math. Soc. 11 (1936), 261–264.CrossRefGoogle Scholar
  32. [32]
    P. Erdős, P. Turán, On some new questions on the distribution of prime numbers. Bull. Amer. Math. Soc. 54 (1948), 371–378.CrossRefMathSciNetGoogle Scholar
  33. [33]
    T. Estermann, On Goldbach’s problem: Proof that almost all even positive integers are sums of two primes. Proc. London Math. Soc. (2) 44 (1938), 307–14.CrossRefMathSciNetGoogle Scholar
  34. [34]
    L. Euler, C. Goldbach, Briefwechsel 1729–1764. Akademie Verlag, Berlin, 1965.Google Scholar
  35. [35]
    H. Furstenberg, Ergodic behaviour of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Analyse Math. 31 (1977), 204–256.CrossRefzbMATHMathSciNetGoogle Scholar
  36. [36]
    D. A. Goldston, C. Yıldırım, Higher correlations of divisor sums related to primes. III. Small gaps between primes. Proc. London Math. Soc. (3) 95 (2007), no. 3, 653–686.CrossRefzbMATHGoogle Scholar
  37. [37]
    D. A. Goldston, J. Pintz, C. Yıldırım, Primes in Tuples III: On the difference p n+v−pn. Funct. Approx. Comment. Math. 35 (2006), 79–89.CrossRefzbMATHMathSciNetGoogle Scholar
  38. [38]
    D. A. Goldston, J. Pintz, C. Yıldırım, Primes in tuples. I. Ann. of Math. (2) 170 (2009), no. 2, 819–862.CrossRefzbMATHMathSciNetGoogle Scholar
  39. [39]
    D. A. Goldston, J. Pintz, C. Yıldırım, Primes in tuples. II. Acta Math. 204 (2010), no. 1, 1–47.CrossRefzbMATHMathSciNetGoogle Scholar
  40. [40]
    D. A. Goldston, S. W. Graham, J. Pintz, C. Y. Yıldırım, Small gaps between products of two primes. Proc. London Math. Soc. (3) 98 (2009), no. 3, 741–774.CrossRefzbMATHGoogle Scholar
  41. [41]
    D. A. Goldston, S. W. Graham, J. Pintz, C. Y. Yıldırım, Small gaps between almost primes, the parity problem, and some conjectures of Erdős on consecutive integers. Int. Math. Res. Not. IMRN 2011, no. 7, 1439–1450.Google Scholar
  42. [42]
    W. T. Gowers, A new proof of Szemerédi’s theorem for arithmetic progressions of length four. Geom. Funct. Anal. 8 (1998), no. 3, 529–551.CrossRefzbMATHMathSciNetGoogle Scholar
  43. [43]
    W. T. Gowers, A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11 (2001), no. 3, 465–588.CrossRefzbMATHMathSciNetGoogle Scholar
  44. [44]
    A. Granville, Unexpected irregularities in the distribution of prime numbers, in: Proceedings of the International Congress of Mathematicians (Zürich, 1994). Vol. 1, 2, 388–399, Birkhäuser, Basel, 1995.Google Scholar
  45. [45]
    A. Granville, Harald Cramér and the Distribution of Prime Numbers. Scand. Actuarial J. No. 1 (1995), 12–28.Google Scholar
  46. [46]
    G. Greaves, Sieves in Number Theory. Springer, 2001.Google Scholar
  47. [47]
    B. Grein, T. Tao, The primes contain arbitrarily long arithmetic progressions. Ann. of Math. (2) 167 (2008), no. 2, 481–547.CrossRefMathSciNetGoogle Scholar
  48. [48]
    G. H. Hardy, J. E. Littlewood, Some problems of ‘Partitio Numerorum’, III: On the expression of a number as a sum of primes. Acta Math. 44 (1923), 1–70.CrossRefzbMATHMathSciNetGoogle Scholar
  49. [49]
    G. H. Hardy, J. E. Littlewood, Some problems of ‘Partitio Numerorum’, V: A further contribution to the study of Goldbach’s problem. Proc. London Math. Soc. (2) 22 (1924), 46–56.CrossRefMathSciNetGoogle Scholar
  50. [50]
    D. R. Heath-Brown, Three primes and an almost prime in arithmetic progression. J. London Math. Soc. (2) 23 (1981), no. 3, 396–414.CrossRefzbMATHMathSciNetGoogle Scholar
  51. [51]
    D. R. Heath-Brown, The divisor function at consecutive integers. Mathematika 31 (1984), 141–149.CrossRefzbMATHMathSciNetGoogle Scholar
  52. [52]
    D. R. Heath-Brown, Integer sets containing no arithmetic progressions. J. London Math. Soc. (2) 35 (1987), no. 3, 385–394.CrossRefzbMATHMathSciNetGoogle Scholar
  53. [53]
    A. J. Hildebrand, H. Maier, Irregularities in the distribution of primes in short intervals. J. Reine Angew. Math. 397 (1989), 162–193.zbMATHMathSciNetGoogle Scholar
  54. [54]
    G. Hoheisel, Primzahlprobleme in der Analysis. SBer. Preuss. Akad. Wiss., Berlin (1930), 580–588.Google Scholar
  55. [55]
    M. N. Huxley, On the differences of primes in arithmetical progressions. Acta Arith. 15 (1968/69), 367–392.MathSciNetGoogle Scholar
  56. [56]
    M. N. Huxley, Small differences between consecutive primes II. Mathematika 24 (1977), 142–152.CrossRefMathSciNetGoogle Scholar
  57. [57]
    Chaohua Jia, Almost all short intervals containing prime numbers. Acta Arith. 76 (1996), 21–84.MathSciNetGoogle Scholar
  58. [58]
    J. Kaczorowski, A. Perelli, J. Pintz, A note on the exceptional set for Goldbach’s problem in short intervals. Monatsh. Math. 116, no. 3-4 (1993), 275–282. Corrigendum: ibid. 119 (1995), 215–216.CrossRefzbMATHMathSciNetGoogle Scholar
  59. [59]
    I. Kátai, A remark on a paper of Ju. V. Linnik. Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 17 (1967), 99–100.zbMATHGoogle Scholar
  60. [60]
    L. Kronecker, Vorlesungen über Zahlentheorie, I. p. 68, Teubner, Leipzig, 1901.Google Scholar
  61. [61]
    E. Landau, Gelöste und ungelöste Probleme aus der Theorie der Primzahlverteilung und der Riemannschen Zetafunktion. Jahresber. Deutsche Math. Ver. 21 (1912), 208–228. [Proc. 5th Internat. Congress of Math., I, 93–108, Cambridge 1913; Collected Works, 5, 240–255, Thales Verlag.]zbMATHGoogle Scholar
  62. [62]
    Yu. V. Linnik, Some conditional theorems concerning the binary Goldbach problem. Izv. Akad. Nauk. SSSR 16 (1952), 503–520 (Russian).zbMATHMathSciNetGoogle Scholar
  63. [63]
    H. Maier, Chains of large gaps between consecutive primes. Adv. in Math. 39 (1981), no. 3, 257–269.CrossRefzbMATHMathSciNetGoogle Scholar
  64. [64]
    H. Maier, Small differences between prime numbers. Michigan Math. J. 35 (1988), 323–344.CrossRefzbMATHMathSciNetGoogle Scholar
  65. [65]
    H. Maier, C. Pomerance, Unusually large gaps between consecutive primes. Trans. Amer. Math. Soc. 322 (1990), 201–237.CrossRefzbMATHMathSciNetGoogle Scholar
  66. [66]
    E. Maillet, L’intermédiaire des math. 12 (1905), p. 108.Google Scholar
  67. [67]
    W. Narkiewicz, The Development of Prime Number Theory. From Euclid to Hardy and Littlewood. Springer, 2000.Google Scholar
  68. [68]
    J. Pintz, Very large gaps between consecutive primes. J. Number Th. 63 (1997), 286–301.CrossRefzbMATHMathSciNetGoogle Scholar
  69. [69]
    J. Pintz, Cramér vs. Cramér. On Cramér’s probabilistic model for primes. Funct. Approx. Comment. Math. 37 (2007), part 2, 361–376.CrossRefzbMATHMathSciNetGoogle Scholar
  70. [70]
    J. Pintz, Are there arbitrarily long arithmetic progressions in the sequence of twin primes? An irregular mind, Bolyai Soc. Math. Stud. 21, Springer, 2010, pp. 525–559.CrossRefMathSciNetGoogle Scholar
  71. [72]
    J. Pintz, Are there arbitrarily long arithmetic progressions in the sequence of twin primes? II. Proceedings of the Steklov Institute 276 (2012), 227–232.MathSciNetGoogle Scholar
  72. [73]
    A. de Polignac, Six propositions arithmologiques déduites de crible d’Ératosthene. Nouv. Ann. Math. 8 (1849), 423–429.Google Scholar
  73. [74]
    R. A. Rankin, The difference between consecutive prime numbers. J. London Math. Soc. 13 (1938), 242–244.CrossRefMathSciNetGoogle Scholar
  74. [75]
    R. A. Rankin, The difference between consecutive prime numbers. II. Proc. Cambridge Philos. Soc. 36 (1940), 255–266.CrossRefMathSciNetGoogle Scholar
  75. [76]
    R. A. Rankin, The difference between consecutive primes. III. J. London Math. Soc. 22 (1947), 226–230.CrossRefzbMATHMathSciNetGoogle Scholar
  76. [77]
    R. A. Rankin, The difference between consecutive prime numbers, V. Proc. Edinburgh Math. Soc. (2) 13 (1962/63), 331–332.CrossRefMathSciNetGoogle Scholar
  77. [78]
    G. Ricci, Ricerche aritmetiche sui polinomi, II. (Intorno a una proposizione non vera di Legendre). Rend. Palermo 58 (1934), 190–208.CrossRefGoogle Scholar
  78. [79]
    G. Ricci, La differenza di numeri primi consecutivi. Rendiconti Sem. Mat. Univ. e Politecnico Torino 11 (1952), 149–200. Corr. ibidem 12 (1953), p. 315.Google Scholar
  79. [80]
    G. Ricci, Sull’andamento della differenza di numeri primi consecutivi. Riv. Mat. Univ. Parma 5 (1954), 3–54.MathSciNetGoogle Scholar
  80. [81]
    K. F. Roth, Sur quelques ensembles d’entiers. C.R. Acad. Sci. Paris 234 (1952), 388–390.zbMATHMathSciNetGoogle Scholar
  81. [82]
    K. F. Roth, On certain sets of integers. J. London Math. Soc. 28 (1953), 104–109.CrossRefzbMATHMathSciNetGoogle Scholar
  82. [84]
    T. Sanders, On Roth’s theorem on progressions. Ann. of Math. (2) 174 (2011), no. 1, 619–636.CrossRefzbMATHMathSciNetGoogle Scholar
  83. [85]
    A. Schönhage, Eine Bemerkung zur Konstruktion grosser Primzahllücken. Arch. Math. Basel 14 (1963), 29–30.CrossRefzbMATHMathSciNetGoogle Scholar
  84. [86]
    A. Selberg, An elementary proof of the prime-number theorem. Ann. of Math. (2) 50 (1949), 305–313.CrossRefzbMATHMathSciNetGoogle Scholar
  85. [87]
    J.-C. Schlage-Puchta, The equation ω(n) = ω(n + 1). Mathematika 50 (2003), no. 1-2, 99–101 (2005).CrossRefzbMATHMathSciNetGoogle Scholar
  86. [88]
    C. Spiro, Thesis. Urbana, 1981.Google Scholar
  87. [89]
    E. Szemerédi, On sets of integers containing no four elements in arithmetic progression. 1970 Number Theory (Colloq. János Bolyai Math. Soc. Debrecen, 1968), pp. 197–204, North-Holland, Amsterdam.Google Scholar
  88. [90]
    E. Szemerédi, On sets of integers containing no four elements in arithmetic progression. Acta Math. Acad. Sci. Hungar. 20 (1969), 89–104.CrossRefzbMATHMathSciNetGoogle Scholar
  89. [91]
    E. Szemerédi, On sets of integers containing no k elements in arithmetic progression. Acta Arith. 27 (1975), 199–245.zbMATHMathSciNetGoogle Scholar
  90. [92]
    E. Szemerédi, Regular partitions of graphs. Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976) Colloq. Internat. CNRS 260, CNRS, Paris, 1978, pp. 399–401.Google Scholar
  91. [93]
    E. Szemerédi, Integer sets containing no arithmetic progressions. Acta Math. Hungar. 56 (1990), no. 1-2, 155–158.CrossRefzbMATHMathSciNetGoogle Scholar
  92. [94]
    A. I. Vinogradov, The density hypothesis for Dirichlet L-series. Izv. Akad. Nauk. SSSR 29 (1965), 903–934 (Russian). Corr.: ibidem, 30 (1966), 719–720.zbMATHGoogle Scholar
  93. [95]
    I. M. Vinogradov, Representation of an odd number as a sum of three prime numbers. Doklady Akad. Nauk. SSSR 15 (1937), 291–294 (Russian).Google Scholar
  94. [96]
    I. M. Vinogradov, Special Variants of the Method of Trigonometric Sums. Nauka, Moskva, 1976 (Russian).Google Scholar
  95. [97]
    Wang Yuan, Xie Sheng-gang, Yu Kun-rui, Remarks on the difference of consecutive primes. Sci. Sinica 14 (1965), 786–788.zbMATHMathSciNetGoogle Scholar
  96. [98]
    E. Westzynthius, Über die Verteilung der Zahlen, die zu der n ersten Primzahlen teilerfremd sind. Comm. Phys. Math. Helsingfors (5) 25 (1931), 1–37.Google Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag 2013

Authors and Affiliations

  • János Pintz
    • 1
  1. 1.Alfréd Rényi Institute of MathematicsHungarian Academy of SciencesBudapestHungary

Personalised recommendations