The Beginnings of Geometric Graph Theory

  • János Pach
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 25)


Geometric graphs (topological graphs) are graphs drawn in the plane with possibly crossing straight-line edges (resp., curvilinear edges). Starting with a problem of Heinz Hopf and Erika Pannwitz from 1934 and a seminal paper of Paul Erdős from 1946, we give a biased survey of Turán-type questions in the theory of geometric and topological graphs. What is the maximum number of edges that a geometric or topological graph of n vertices can have if it contains no forbidden subconfiguration of a certain type? We put special emphasis on open problems raised by Erdős or directly motivated by his work.


Chromatic Number Topological Graph Geometric Graph Combinatorial Geometry Disjoint Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Ackerman: On the maximum number of edges in topological graphs with no four pairwise crossing edges, Discrete Comput. Geom. 41 (2009), 365–375.zbMATHMathSciNetGoogle Scholar
  2. [2]
    E. Ackerman, J. Fox, J. Pach, and A. Suk: On grids in topological graphs, in: 25th ACM Symp. on Comput. Geom. (SoCG), ACM Press, New York, 2009, 403–412.Google Scholar
  3. [3]
    E. Ackerman and G. Tardos: On the maximum number of edges in quasi-planar graphs, J. Combin. Theory, Ser. A 114 (2007), 563–571.zbMATHMathSciNetGoogle Scholar
  4. [4]
    P. K. Agarwal, B. Aronov, J. Pach, R. Pollack, and M. Sharir: Quasi-planar graphs have a linear number of edges, Combinatorica 17 (1997), 1–9.zbMATHMathSciNetGoogle Scholar
  5. [5]
    M. Ajtai, V. Chvátal, M. Newborn, and E. Szemerédi: Crossing free graphs, Ann. Discrete Math. 12 (1982), 9–12.zbMATHGoogle Scholar
  6. [6]
    N. Alon and P. Erdős: Disjoint edges in geometric graphs, Discrete Comput. Geom. 4 (1989), 287–290.zbMATHMathSciNetGoogle Scholar
  7. [7]
    D. Avis, P. Erdős, and J. Pach: Repeated distances in space, Graphs Combin. 4 (1988), 207–217.zbMATHMathSciNetGoogle Scholar
  8. [8]
    S. Avital and H. Hanani: Graphs, continuation, Gilyonot Le’matematika 3, issue 2 (1966), 2–8.Google Scholar
  9. [9]
    H. Baron: Lösung der Aufgabe 167, Jahresbericht Deutsch. Math.-Verein. 45 (1935), 112.Google Scholar
  10. [10]
    B. Bollobás and A. Thomason: Proof of a conjecture of Mader, Erdős and Hajnal on topological complete subgraphs, European J. Combin. 19 (1998), 883–887.zbMATHMathSciNetGoogle Scholar
  11. [12]
    K. Borsuk: Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177–190.Google Scholar
  12. [13]
    D. Boutin: Convex geometric graphs with no short self-intersecting paths, Congr. Numer. 160 (2003), 205–214.zbMATHMathSciNetGoogle Scholar
  13. [14]
    P. Brass: On the maximum number of unit distances among n points in dimension four, in: Intuitive Geometry (I. Bárány et al., eds.), Bolyai Soc. Math. Studies 4, Springer, Berlin, 1997, 277–290.Google Scholar
  14. [15]
    P. Brass, W. Moser, and J. Pach: Research Problems in Discrete Geometry, Springer, New York, 2005.zbMATHGoogle Scholar
  15. [16]
    G. Cairns and Y. Nikolayevsky: Bounds for generalized thrackles, Discrete Comput. Geom. 23 (2000), 191–206.zbMATHMathSciNetGoogle Scholar
  16. [17]
    G. Cairns and Y. Nikolayevsky: Outerplanar thrackles, Graphs Combin. 28 (2012), 85–96.zbMATHMathSciNetGoogle Scholar
  17. [18]
    P. A. Catlin: Hajós’ graph-coloring conjecture: variations and counterexamples, J. Combin. Theory, Ser. B 26 (1979), 268–274.zbMATHMathSciNetGoogle Scholar
  18. [19]
    J. Černý: Geometric graphs with no three disjoint edges, Discrete Comput. Geom. 34 (2005), 679–695.zbMATHMathSciNetGoogle Scholar
  19. [20]
    F. R. K. Chung: On the number of different distances determined by n points in the plane, J. Combin. Theory, Ser. A 36 (1984), 342–354.zbMATHMathSciNetGoogle Scholar
  20. [21]
    F. R. K. Chung, E. Szemerédi, and W. T. Trotter: The number of different distances determined by a set of points in the Euclidean plane, Discrete Comput. Geom. 7 (1992), 1–11.zbMATHMathSciNetGoogle Scholar
  21. [22]
    K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, and E. Welzl: Combinatorial complexity bounds for arrangements of curves and spheres, Discrete Comput. Geom. 5 (1990), 99–160. See also: H. Kaplan, J. Matoušek, Z. Safernová, and M. Sharir: Unit distances in three dimensions, Combin. Probab. Comput. 21 (2012), 597–610; and J. Zahl: An improved bound on the number of point-surface incidences in three dimensions, Contrib. Discrete Math., to appear.zbMATHMathSciNetGoogle Scholar
  22. [23]
    G. A. Dirac: Homomorphism theorems for graphs, Math. Ann. 153 (1964), 69–80.MathSciNetGoogle Scholar
  23. [24]
    G. A. Dirac: Chromatic number and topological complete subgraphs, Canad. Math. Bull. 8 (1965), 711–715.zbMATHMathSciNetGoogle Scholar
  24. [25]
    V. L. Dolnikov: Some properties of graphs of diameters, Discrete Comput. Geom. 24 (2000), 293–299.MathSciNetGoogle Scholar
  25. [26]
    H. G. Eggleston: Covering a three-dimensional set with sets of smaller diameter, J. London Math. Soc. 30 (1955), 11–24.zbMATHMathSciNetGoogle Scholar
  26. [27]
    G. Elekes: On the number of sums and products, Acta Arith. 81 (1997), 365–367.zbMATHMathSciNetGoogle Scholar
  27. [28]
    G. Elekes and M. Sharir: Incidences in three dimensions and distinct distances in the plane, Combin. Probab. Comput. 20 (2011), 571–608.zbMATHMathSciNetGoogle Scholar
  28. [29]
    P. Erdős: On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248–250.MathSciNetGoogle Scholar
  29. [30]
    P. Erdős: Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292–294.MathSciNetGoogle Scholar
  30. [31]
    P. Erdős: Néhány geometriai problémáról, Mat. Lapok 8 (1957), 86–92.MathSciNetGoogle Scholar
  31. [32]
    P. Erdős: On sets of distances of n points in Euclidean space, Magyar Tudom. Akad. Matem. Kut. Int. Közl. (Publ. Math. Inst. Hung. Acad. Sci.) 5 (1960), 165–169.Google Scholar
  32. [33]
    P. Erdős: On some problems of elementary and combinatorial geometry, Ann. Mat. Pura Appl. (4) 103 (1975), 99–108.MathSciNetGoogle Scholar
  33. [34]
    P. Erdős: Extremal problems in number theory, combinatorics and geometry, in: Proceedings of the International Congress of Mathematicians, Vol. 1 (Warsaw, 1983), PWN, Warsaw, 1984, 51–70.Google Scholar
  34. [35]
    P. Erdős: Problems and results in discrete mathematics, Discrete Math. 136 (1994), 53–73.MathSciNetGoogle Scholar
  35. [36]
    P. Erdős and S. Fajtlowicz: On the conjecture of Hajós, Combinatorica 1 (1981), 141–143.MathSciNetGoogle Scholar
  36. [37]
    P. Erdős and A. Hajnal: On complete topological subgraphs of certain graphs, Ann. Univ. Sci. Budapest. Eö tvös Sect. Math. 7 (1964), 143–149.Google Scholar
  37. [38]
    P. Erdős, L. Lovász, and K. Vesztergombi: On graphs of large distances, Discrete Comput. Geom. 4 (1989), 541–549.MathSciNetGoogle Scholar
  38. [39]
    P. Erdős and J. Pach: Variations on the theme of repeated distances, Combinatorica 10 (1990), 261–269.MathSciNetGoogle Scholar
  39. [40]
    P. Erdős and G. Purdy: Extremal problems in combinatorial geometry, in: Handbook of Combinatorics, Vol. 1, Elsevier Sci. B. V., Amsterdam, 1995, 809–874.Google Scholar
  40. [41]
    P. Erdős and A. H. Stone: On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087–1091.MathSciNetGoogle Scholar
  41. [42]
    S. Felsner: Geometric Graphs and Arrangements, Vieweg & Sohn, Wiesbaden, 2004.zbMATHGoogle Scholar
  42. [43]
    W. Fenchel and J. W. Sutherland: Lösung der Aufgabe 167, Jahresbericht Deutsch. Math.-Verein. 45 (1935), 33–35.Google Scholar
  43. [44]
    J. Fox and J. Pach: Coloring K k-free intersection graphs of geometric objects in the plane, European J. Combin. 33 (2012), 853–866.zbMATHMathSciNetGoogle Scholar
  44. [45]
    J. Fox, J. Pach, and A. Suk: The number of edges in k-quasi-planar graphs, SIAM J. Discrete Math., 27 (2013), 550–561.zbMATHMathSciNetGoogle Scholar
  45. [46]
    J. Fox, J. Pach, and C. D. Tóth: A bipartite strengthening of the crossing lemma, J. Combin. Theory, Ser. B 100 (2010), 23–35.zbMATHMathSciNetGoogle Scholar
  46. [47]
    J. Fox and B. Sudakov: Density theorems for bipartite graphs and related Ramsey-type results, Combinatorica 29 (2009), 153–196.zbMATHMathSciNetGoogle Scholar
  47. [48]
    R. Fulek and J. Pach: A computational approach to Conway’s thrackle conjecture, Comput. Geom. 44 (2011), 345–355.zbMATHMathSciNetGoogle Scholar
  48. [49]
    R. Fulek and A. Ruiz-Vargas: Topological graphs: empty triangles and disjoint matchings, Proc. 29th Symposium on Computational Geometry (SoCG’ 13), ACM Press, New York, 2013, to appear.Google Scholar
  49. [50]
    W. Goddard, M. Katchalski, and D. Kleitman: Forcing disjoint segments in the plane, European J. Combin. 17 (1996), 391–395.zbMATHMathSciNetGoogle Scholar
  50. [51]
    J. E. Goodman and J. O’Rourke, eds.: Handbook of Discrete and Computational Geometry. 2nd edition, Chapman & Hall/CRC, Boca Raton, 2004.zbMATHGoogle Scholar
  51. [52]
    B. Grünbaum: A proof of Vázsonyi’s conjecture, Bull. Res. Council Israel, Sect. A 6 (1956), 77–78.MathSciNetGoogle Scholar
  52. [54]
    A. Heppes: Beweis einer Vermutung von A. Vázsonyi, Acta Math. Acad. Sci. Hungar. 7 (1956), 463–466.MathSciNetGoogle Scholar
  53. [55]
    A. Heppes and P. Révész: Zum Borsukschen Zerteilungsproblem, Acta Math. Acad. Sci. Hungar. 7 (1956), 159–162.zbMATHMathSciNetGoogle Scholar
  54. [56]
    A. Hinrichs and Ch. Richter: New sets with large Borsuk numbers, Discrete Math. 270 (2003), 137–147.zbMATHMathSciNetGoogle Scholar
  55. [57]
    H. Hopf and E. Pannwitz: Aufgabe Nr. 167, Jahresbericht d. Deutsch. Math.-Verein. 43 (1934), 114.Google Scholar
  56. [58]
    H. A. Jung: Anwendung einer Methode von K. Wagner bei Färbungsproblemen für Graphen, Math. Ann. 161 (1965), 325–326.zbMATHMathSciNetGoogle Scholar
  57. [59]
    J. Kahn and G. Kalai: A counterexample to Borsuk’s conjecture, Bull. Amer. Math. Soc. (N.S.) 29 (1993), 60–62.zbMATHMathSciNetGoogle Scholar
  58. [60]
    N. H. Katz: On arithmetic combinatorics and finite groups, Illinois J. Math. 49 (2005), 33–43.zbMATHMathSciNetGoogle Scholar
  59. [61]
    N. H. Katz and G. Tardos: A new entropy inequality for the Erdős distance problem, in: Towards a Theory of Geometric Graphs, Contemp. Math. 342, Amer. Math. Soc., Providence, 2004, 119–126.Google Scholar
  60. [62]
    M. Klazar and A. Marcus: Extensions of the linear bound in the Füredi-Hajnal conjecture, Adv. in Appl. Math. 38 (2007), 258–266.zbMATHMathSciNetGoogle Scholar
  61. [63]
    J. Komlós and E. Szemerédi: Topological cliques in graphs. II, Combin. Probab. Comput. 5 (1996), 79–90.zbMATHMathSciNetGoogle Scholar
  62. [64]
    M. van Kreveld and B. Speckmann, eds.: Graph Drawing. (Revised selected papers from the 19th International Symposium (GD 2011) held at the Technical University of Eindhoven, Eindhoven.) Lecture Notes in Computer Science 7034, Springer, Heidelberg, 2012.zbMATHGoogle Scholar
  63. [65]
    Y. S. Kupitz: Extremal Problems of Combinatorial Geometry, Lecture Notes Series 53, Aarhus University, Denmark, 1979.Google Scholar
  64. [66]
    Y. S. Kupitz, H. Martini, and M. A. Perles: Finite sets in R d with many diameters—a survey, in: Proceedings of the International Conference on Mathematics and Applications (ICMA-MU 2005, Bangkok), Mahidol University Press, Bangkok, 2005, 91–112. Also in: East-West J. Math.: Contributions in Mathematics and Applications (2007), 41–57.Google Scholar
  65. [67]
    Y. S. Kupitz, H. Martini, and B. Wegner: Diameter graphs and full equi-intersectors in classical geometries, in: IV. International Conference in Stoch. Geo., Conv. Bodies, Emp. Meas. & Apps. to Eng. Sci., Vol. II, Rend. Circ. Mat. Palermo (2) Suppl. No. 70, part II (2002), 65–74.Google Scholar
  66. [68]
    T. Leighton; Complexity Issues in VLSI. Foundations of Computing Series, MIT Press, Cambridge, MA, 1983.Google Scholar
  67. [69]
    L. Lovász, J. Pach, and M. Szegedy: On Conway’s thrackle conjecture, Discrete Comput. Geom. 18 (1997), 369–376.zbMATHMathSciNetGoogle Scholar
  68. [70]
    W. Mader: Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math. Ann. 174 (1967), 265–268.zbMATHMathSciNetGoogle Scholar
  69. [71]
    W. Mader: 3n−5 edges do force a subdivision of K 5, Combinatorica 18 (1998), 569–595.zbMATHMathSciNetGoogle Scholar
  70. [72]
    B. Mohar and C. Thomassen: Graphs on Surfaces, Johns Hopkins University Press, Baltimore, MD, 2001.zbMATHGoogle Scholar
  71. [75]
    L. Moser: On the different distances determined by n points, Amer. Math. Monthly 59 (1952), 85–91.zbMATHMathSciNetGoogle Scholar
  72. [76]
    A. Nilli: On Borsuk’s problem, in: Jerusalem Combinatorics’ 93, Contemporary Math. 178 (1994), 209–210.MathSciNetGoogle Scholar
  73. [77]
    M. Morse: The International Congress in Oslo, Bull. Amer. Math. Soc. 42 (1936), 777–781.MathSciNetGoogle Scholar
  74. [78]
    J. Pach, ed.: Towards a Theory of Geometric Graphs. Contemp. Math. 342, Amer. Math. Soc., Providence, RI, 2004.Google Scholar
  75. [79]
    J. Pach, ed.: Thirty Essays on Geometric Graph Theory, Springer, New York, 2013.zbMATHGoogle Scholar
  76. [80]
    J. Pach and P. K. Agarwal: Combinatorial Geometry, John Wiley & Sons, New York, 1995.zbMATHGoogle Scholar
  77. [81]
    J. Pach, R. Pinchasi, M. Sharir, and G. Tóth: Topological graphs with no large grids, Graphs and Combinatorics 21 (2005), 355–364.zbMATHMathSciNetGoogle Scholar
  78. [82]
    J. Pach, R. Pinchasi, T. Tardos, and G. Tóth: Geometric graphs with no self-intersecting path of length three, European J. Combin. 25 (2004), 793–811.zbMATHMathSciNetGoogle Scholar
  79. [83]
    J. Pach, R. Radoičić, and G. Tóth: Relaxing planarity for topological graphs, in: Discrete and Computational Geometry, Lecture Notes in Comput. Sci. 2866, Springer, Berlin, 2003, 221–232.Google Scholar
  80. [84]
    J. Pach, R. Radoičić, G. Tardos, and G. Tóth: Improving the crossing lemma by finding more crossings in sparse graphs, Discrete Comput. Geom. 36 (2006), 527–552.zbMATHMathSciNetGoogle Scholar
  81. [85]
    J. Pach, F. Shahrokhi, and M. Szegedy: Applications of the crossing number, Algorithmica 16 (1996), 111–117.zbMATHMathSciNetGoogle Scholar
  82. [86]
    J. Pach, J. Solymosi, and G. Tóth: Unavoidable configurations in complete topological graphs, Discrete Comput. Geom. 30 (2003), 311–320.zbMATHMathSciNetGoogle Scholar
  83. [87]
    J. Pach and E. Sterling: Conway’s conjecture for monotone thrackles, Amer. Math. Monthly 118, 544–548.Google Scholar
  84. [88]
    J. Pach and G. Tardos: Forbidden paths and cycles in ordered graphs and matrices, Israel J. Math. 155 (2006), 359–380.zbMATHMathSciNetGoogle Scholar
  85. [89]
    J. Pach and G. Tóth: Disjoint edges in topological graphs, J. Comb. 1 (2010), 335–344.zbMATHMathSciNetGoogle Scholar
  86. [90]
    J. Pach and J. Törőcsik: Some geometric applications of Dilworth’s theorem, Discrete Comput. Geom. 12 (1994), 1–7.zbMATHMathSciNetGoogle Scholar
  87. [92]
    A. Perlstein and R. Pinchasi: Generalized thrackles and geometric graphs in R 3 with no pair of strongly avoiding edges, Graphs Combin. 24 (2008), 373–389.zbMATHMathSciNetGoogle Scholar
  88. [93]
    A. M. Raigorodskii: Three Lectures on the Borsuk Partition Problem. Surveys in Contemporary Mathematics, London Math. Soc. Lecture Note Ser. 347, Cambridge Univ. Press, Cambridge, 2008, 202–247.Google Scholar
  89. [94]
    Z. Schur, M. A. Perles, H. Martini, and Y. S. Kupitz: On the number of maximal regular simplices determined by n points in ℝd, in: Discrete and Computational Geometry, The Goodman-Pollack Festschrift (Aronov et al., eds.), Algorithms Combin. 25, Springer, Berlin, 2003, 767–787.Google Scholar
  90. [95]
    J. Solymosi and Cs. Tóth: Distinct distances in the plane, Discrete Comput. Geom. 25 (2001), 629–634.zbMATHMathSciNetGoogle Scholar
  91. [96]
    J. Spencer, E. Szemerédi, and W. T. Trotter: Unit distances in the Euclidean plane, in: Graph Theory and Combinatorics (B. Bollobás, ed.), Academic Press, London, 1984, 293–303.Google Scholar
  92. [97]
    S. Straszewicz: Sur un problème géométrique de P. Erdős, Bull. Acad. Pol. Sci., Cl. III 5 (1957), 39–40.zbMATHMathSciNetGoogle Scholar
  93. [98]
    A. Suk: Disjoint edges in complete topological graphs, in: Proc. 28th Symposium on Computational Geometry (SoCG’12), ACM Press, New York, 2012, 383–386.Google Scholar
  94. [99]
    K. J. Swanepoel: A new proof of Vázsonyi’s conjecture, J. Combinat. Theory, Ser. A 115 (2008), 888–892.zbMATHMathSciNetGoogle Scholar
  95. [100]
    K. J. Swanepoel: Unit distances and diameters in Euclidean spaces, Discrete Comput. Geom. 41 (2009), 1–27.zbMATHMathSciNetGoogle Scholar
  96. [101]
    L. A. Székely: Crossing numbers and hard Erdős problems in discrete geometry, Combin. Probab. Comput. 6 (1997), 353–358.zbMATHMathSciNetGoogle Scholar
  97. [102]
    G. Tardos: On distinct sums and distinct distances, Adv. Math. 180 (2003), 275–289.zbMATHMathSciNetGoogle Scholar
  98. [103]
    G. Tardos: Construction of locally plane graphs with many edges, in: Thirty Essays on Geometric Graph Theory (J. Pach, ed.), Springer, New York, 2013, 541–562.Google Scholar
  99. [104]
    G. Tardos and G. Tóth: Crossing stars in topological graphs, SIAM J. Discrete Math. 21 (2007), 737–749.zbMATHMathSciNetGoogle Scholar
  100. [105]
    C. Thomassen: Some remarks on Hajós’ conjecture, J. Combin. Theory, Ser. B 93 (2005), 95–105.zbMATHMathSciNetGoogle Scholar
  101. [106]
    G. Tóth: Note on geometric graphs, Journal of Combinatorial Theory, Ser. A 89 (2000), 126–132.zbMATHGoogle Scholar
  102. [107]
    G. Tóth and P. Valtr: Geometric graphs with few disjoint edges, Discrete Comput. Geom. 22 (1999), 633–642.zbMATHMathSciNetGoogle Scholar
  103. [108]
    P. Turán: Egy gráfelméleti szélsőértékfeladatról, Matematikai és Fizikai Lapok 48 (1941), 436–452.Google Scholar
  104. [109]
    P. Valtr: Graph drawing with no k pairwise crossing edges, in: Graph Drawing, Lecture Notes in Comput. Sci. 1353, Springer, Berlin, 1997, 205–218.Google Scholar
  105. [110]
    P. Valtr: On geometric graphs with no k pairwise parallel edges, Discrete Comput. Geom. 19 (1998), 461–469.zbMATHMathSciNetGoogle Scholar
  106. [111]
    K. Vesztergombi: On the distribution of distances in finite sets in the plane, Discrete Math. 57 (1985), 129–145.zbMATHMathSciNetGoogle Scholar
  107. [112]
    S. Vidor: Síkgráfok és Általánosításaik, Diploma thesis, Eötvös University, Budapest, 2009.Google Scholar
  108. [113]
    K. Wagner: Beweis einer Abschwächung der Hadwiger-Vermutung, Math. Ann. 153 (1964), 139–141.zbMATHMathSciNetGoogle Scholar
  109. [114]
    D. R. Woodall: Thrackles and deadlock, in: Combinatorics, Proc. Conf. Comb. Math. (D. Welsh, ed.), Academic Press, London, 1971, 335–347.Google Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag 2013

Authors and Affiliations

  • János Pach
    • 1
    • 2
  1. 1.EPFLLausanneSwitzerland
  2. 2.Alfréd Rényi Institute of MathematicsHungarian Academy of SciencesBudapestHungary

Personalised recommendations