Skip to main content

Small Ball Probability, Inverse Theorems, and Applications

  • Chapter
Erdős Centennial

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 25))

Abstract

Let ξ be a real random variable with mean zero and variance one and A ={a 1; …; a n } be a multi-set in R d. The random sum

$$S_A : = a_1 \xi _1 + \cdots + a_n \xi _n$$

where ξ i are iid copies of ξ is of fundamental importance in probability and its applications.

We discuss the small ball problem, the aim of which is to estimate the maximum probability that S A belongs to a ball with given small radius, following the discovery made by Littlewood-Offord and Erdős almost 70 years ago. We will mainly focus on recent developments that characterize the structure of those sets A where the small ball probability is relatively large. Applications of these results include full solutions or significant progresses of many open problems in different areas.

The first author is supported by research grant DMS-1256802.

The second author is supported by research grants DMS-0901216 and AFOSAR-FA-9550-12-1-0083.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Bordenave and D. Chafai, Around the circular law, Probab. Surveys 9 (2012), 1–89.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Bourgain, V. Vu and P. M. Wood, On the singularity probability of discrete random matrices, Journal of Functional Analysis 258 (2010), no.2, 559–603.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. T. Bharucha-Reid and M. Sambandham, Random polynomials, Academic Press, Orlando, 1986.

    MATH  Google Scholar 

  4. K. Costello, T. Tao and V. Vu, Random symmetric matrices are almost surely non-singular, Duke Math. J. 135 (2006), 395–413.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Edelman, Eigenvalues and condition numbers of random matrices, SIAM J. Matrix Anal. Appl. 9 (1988), no. 4, 543–560.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Erdős, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. 51 (1945), 898–902.

    Article  MathSciNet  Google Scholar 

  7. P. Erdős and L. Moser, Elementary Problems and Solutions, Amer. Math. Monthly, 54 (1947), no. 4, 229–230.

    Article  MathSciNet  Google Scholar 

  8. C. G. Esséen, On the Kolmogorov-Rogozin inequality for the concentration function, Z. Wahrsch. Verw. Gebiete 5 (1966), 210–216.

    Article  MATH  Google Scholar 

  9. P. Frankl and Z. Füredi, Solution of the Littlewood-Offord problem in high dimensions, Ann. of Math. (2) 128 (1988), no. 2, 259–270.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. Freiman, Foundations of a Structural Theory of Set Addition, Translations of Mathematical Monographs 37, Amer. Math. Soc, Providence, RI, USA, 1973.

    MATH  Google Scholar 

  11. O. Friedland and S. Sodin, Bounds on the concentration function in terms of Diophantine approximation, C. R. Math. Acad. Sci. Paris 345 (2007), no. 9, 513–518.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Goldstine and J. von Neumann, Numerical inverting of matrices of high order, Bull. Amer. Math. Soc. 53 (1947), 1021–1099.

    Article  MATH  MathSciNet  Google Scholar 

  13. F. Götze and A. Tikhomirov, The circular law for random matrices, Ann. Probab. 38 (2010), no. 4, 1444–1491.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Griggs, The Littlewood-Offord problem: tightest packing and an M-part Sperner theorem, Europ. J. Combin. 1 (1980), 225–234.

    Article  MATH  MathSciNet  Google Scholar 

  15. D. S. Gunderson, V. Rödl and A. Sidorenko, Extremal problems for sets forming Boolean algebras and complete partite hypergraphs, J. Combin. Theory Ser. A 88 (1999), 342–367.

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Halász, Estimates for the concentration function of combinatorial number theory and probability, Period. Math. Hungar. 8 (1977), no. 3-4, 197–211.

    Article  MathSciNet  Google Scholar 

  17. D. Hilbert, Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Koeffizienten, J. Reine Angew. Math. 110 (1892), 104–129.

    Google Scholar 

  18. J. Kahn, J. Komlós and E. Szemerédi, On the probability that a random ±1 matrix is singular, J. Amer. Math. Soc. 8 (1995), 223–240.

    MATH  MathSciNet  Google Scholar 

  19. G. Katona, On a conjecture of Erdős and a stronger form of Sperner’s theorem. Studia Sci. Math. Hungar 1 (1966), 59–63.

    MATH  MathSciNet  Google Scholar 

  20. D. Kleitman, On a lemma of Littlewood and Offord on the distributions of linear combinations of vectors, Advances in Math. 5 1970 155–157 (1970).

    Article  MATH  MathSciNet  Google Scholar 

  21. D. Kleitman, Some new results on the Littlewood-Offord problem, J. Combinatorial Theory Ser. A 20 (1976), no. 1, 89–113.

    Article  MATH  MathSciNet  Google Scholar 

  22. D. Kleitman, On a lemma of Littlewood and Offord on the distribution of certain sums, Math. Z. 90 1965 251–259.

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Komlós, On the determinant of (0; 1) matrices, Studia Sci. Math. Hungar. 2 (1967), 7–22.

    MATH  MathSciNet  Google Scholar 

  24. J. Komlós, On the determinant of random matrices, Studia Sci. Math. Hungar. 3 (1968), 387–399.

    MATH  MathSciNet  Google Scholar 

  25. A. Kolmogorov, Two uniform limit theorems for sums of independent random variables, Theor. Probab. Appl. 1 (1956), 384–394.

    Article  Google Scholar 

  26. A. Kolmogorov, Sur les propriétés des fonctions de concentrations de M. P. Lévy, Ann. Inst. H. Poincaré 16 (1958), 27–34.

    MATH  MathSciNet  Google Scholar 

  27. J. E. Littlewood and A. C. Offord, On the number of real roots of a random algebraic equation. III. Rec. Math. Mat. Sbornik N.S. 12, (1943). 277–286.

    MathSciNet  Google Scholar 

  28. S. Muroga, I. Toda, and S. Takasu, Theory of majority decision elements, J. Franklin Inst., 271, 376–418, 1961.

    Article  MATH  MathSciNet  Google Scholar 

  29. S. Muroga, Threshold logic and its applications, Wiley-Interscience, New York, 1971.

    MATH  Google Scholar 

  30. H. Nguyen, Inverse Littlewood-Offord problems and the singularity of random symmetric matrices, Duke Mathematics Journal Vol. 161, 4 (2012), 545–586.

    Article  MATH  Google Scholar 

  31. H. Nguyen, A new approach to an old problem of Erdős and Moser, Journal of Combinatorial Theory, Series A 119 (2012) 977–993.

    Article  MATH  Google Scholar 

  32. H. Nguyen and V. Vu, Optimal Littlewood-Offord theorems, Advances in Math., Vol. 226 6 (2011), 5298–5319.

    Article  MATH  MathSciNet  Google Scholar 

  33. A. Pajor and L. Pastur, On the limiting empirical measure of eigenvalues of the sum of rank one matrices with log-concave distribution, Studia Math. 195 (2009), no. 1, 11–29.

    Article  MATH  MathSciNet  Google Scholar 

  34. R. A. Proctor, Solution of two difficult combinatorial problems with linear algebra, Amer. Math. Monthly 89 (1982), no. 10, 721–734.

    Article  MATH  MathSciNet  Google Scholar 

  35. B. A. Rogozin, An estimate for concentration functions, Theor. Probab. Appl. 6 (1961), 94–97.

    Article  Google Scholar 

  36. M. Rudelson, Invertibility of random matrices: Norm of the inverse, Annals of Mathematics, 168 (2008), no. 2, 575–600.

    Article  MATH  MathSciNet  Google Scholar 

  37. M. Rudelson and R. Vershynin, The Littlewood-Offord Problem and invertibility of random matrices, Advances in Mathematics 218 (2008), 600–633.

    Article  MATH  MathSciNet  Google Scholar 

  38. M. Rudelson and R. Vershynin, Smallest singular value of a random rectangular matrix, Communications on Pure and Applied Mathematics 62 (2009), 1707–1739.

    Article  MATH  MathSciNet  Google Scholar 

  39. M. Rudelson and R. Vershynin, Non-asymptotic theory of random matrices: extreme singular values, Proceedings of the International Congress of Mathematicians. Volume III, 1576–1602, Hindustan Book Agency, New Delhi, 2010.

    Google Scholar 

  40. A. Sali, Strong from of an M-part Sperner theorem, European J. Combinatorics 4 (1983), 179–183.

    Article  MATH  MathSciNet  Google Scholar 

  41. A. Sali, A Sperner type theorem, Order 2 (1985), 13–127.

    Article  MathSciNet  Google Scholar 

  42. A. Sárközy and E. Szemerédi, Über ein Problem von Erdős und Moser, Acta Arithmetica 11 (1965), 205–208.

    MATH  MathSciNet  Google Scholar 

  43. A. A. Sherstov, Communication lower bounds using dual polynomials, Bulletin of the EATCS, 95, 59–93, 2008.

    MATH  MathSciNet  Google Scholar 

  44. D. A. Spielman and S. H. Teng, Smoothed analysis of algorithms, Proceedings of the International Congress of Mathematicians, Vol. I, 597–606, Higher Ed. Press, Beijing, 2002.

    Google Scholar 

  45. D. A. Spielman and S. H. Teng, Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time, J. ACM 51 (2004), no. 3, 385–463.

    Article  MATH  MathSciNet  Google Scholar 

  46. R. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods 1 (1980), no. 2, 168–184.

    Article  MATH  MathSciNet  Google Scholar 

  47. E. Szemerédi, On sets of integers containing no four elements in arithmetic progression, Acta Math. Acad. Sci. Hungar. 20 (1969), 199–245.

    Article  Google Scholar 

  48. T. Tao and V. Vu, On random ±1 matrices: singularity and determinant, Random Structures Algorithms 28 (2006), 1–23.

    Article  MATH  MathSciNet  Google Scholar 

  49. T. Tao and V. Vu, On the singularity probability of random Bernoulli matrices, Journal of the A. M. S 20 (2007), 603–673.

    MATH  MathSciNet  Google Scholar 

  50. T. Tao and V. Vu, Random matrices: The Circular Law, Communication in Contemporary Mathematics 10 (2008), 261–307.

    Article  MATH  MathSciNet  Google Scholar 

  51. T. Tao and V. Vu, From the Littlewood-Offord problem to the circular law: universality of the spectral distribution of random matrices, Bull. Amer. Math. Soc. (N.S.) 46 (2009), no. 3, 377–396.

    Article  MATH  MathSciNet  Google Scholar 

  52. T. Tao and V. Vu, Inverse Littlewood-Offord theorems and the condition number of random matrices, Annals of Mathematics (2) 169 (2009), no. 2, 595–632.

    Article  MATH  MathSciNet  Google Scholar 

  53. T. Tao and V. Vu, On the permanent of random Bernoulli matrices, Adv. Math. 220 (2009), 657–669.

    Article  MATH  MathSciNet  Google Scholar 

  54. T. Tao and V. Vu, A sharp inverse Littlewood-Offord theorem, Random Structures Algorithms 37 (2010), no. 4, 525–539.

    Article  MATH  MathSciNet  Google Scholar 

  55. T. Tao and V. Vu, Smooth analysis of the condition number and the least singular value, Mathematics of Computation 79 (2010), 2333–2352.

    Article  MATH  MathSciNet  Google Scholar 

  56. T. Tao and V. Vu, Random matrices: the distribution of the smallest singular values, Geom. Funct. Anal. 20 (2010), no. 1, 260–297.

    Article  MATH  MathSciNet  Google Scholar 

  57. T. Tao and V. Vu, Random matrices: universality of ESDs and the circular law, Ann. Probab. 38 (2010), no. 5 p. 2023–2065, with an appendix by M. Krishnapur.

    Article  MATH  MathSciNet  Google Scholar 

  58. T. Tao and V. Vu, The Littlewood-Offord problem in high dimensions and a conjecture of Frankl and Füredi, Combinatorica 32 (2012), no. 3, 363–372.

    Article  MATH  MathSciNet  Google Scholar 

  59. T. Tao and V. Vu, Additive Combinatorics, Cambridge Univ. Press, 2006.

    Google Scholar 

  60. L. G. Valiant, Graph-theoretic arguments in low-level complexity, In Proceedings of the 6th MFCS, Lecture Notes in Computer Science, 53, p. 162–176, New York/Berlin, 1977, Springer-Verlag.

    Google Scholar 

  61. E. Viola, On the power of small depth computation, Foundations and Trends in Theoretical Computer Science, 5(1), 1–72, 2009.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Nguyen, H.H., Vu, V.H. (2013). Small Ball Probability, Inverse Theorems, and Applications. In: Lovász, L., Ruzsa, I.Z., Sós, V.T. (eds) Erdős Centennial. Bolyai Society Mathematical Studies, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39286-3_16

Download citation

Publish with us

Policies and ethics