Advertisement

Some Problems and Ideas of Erdős in Analysis and Geometry

  • R. Daniel Mauldin
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 25)

Abstract

I review a meager few of the many problems and ideas Erdős proposed over the years involving a mixture of measure theory, geometry, and set theory.

Keywords

Kolmogorov Complexity Conformal Measure Constructive Dimension Steiner Symmetrization Additive Number Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Bourgain, On the Erdős-Volkmann and Katz-Tao Ring Conjectures, Geom. Funct. Anal., 19 (2003), 334–365.CrossRefMathSciNetGoogle Scholar
  2. [2]
    Z. Buczolich and R. D. Mauldin, On the convergence of series of translates for measurable functions, Mathematika, 46 (1999), 337–341.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    Z. Buczolich, J.-P. Kahane and R. D. Mauldin, On series of translates of positive functions, Acta Math. Hungarica, 98 (2001), 171–188.CrossRefMathSciNetGoogle Scholar
  4. [4]
    Z. Buczolich and R. D. Mauldin, On series of translates of positive functions II, Indagationes Math., 12 (2001), 317–327.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [6]
    H. T. Croft, K. J. Falconer, Richard K. Guy, Unsolved problems in geometry, Springer-Verlag, Berlin, 1994.Google Scholar
  6. [8]
    R. G. Downey and D. R. Hirschfeldt, Algorithmic randomness and complexity, Theory and Applications of Computability, Springer, New York, 2010.Google Scholar
  7. [9]
    G. A. Edgar and C. Miller, Borel subrings of the reals, Proc. Amer. Math. Soc., 131, 1121–1129, 2002.CrossRefMathSciNetGoogle Scholar
  8. [10]
    P. Elias, Dirichlet sets, Erdős-Kunen-Mauldin theorem and analytic subgroups of the reals. Proc. Amer. Math. Soc., 139, (2010), 2093–2104.CrossRefMathSciNetGoogle Scholar
  9. [11]
    P. Erdős, On the difference of consecutive primes, Quart. J. Oxford, 6 (1935), 124–128.CrossRefGoogle Scholar
  10. [12]
    P. Erdős, On the strong law of large numbers, Trans. Amer. Math. Soc., 67 (1949), 51–56.MathSciNetGoogle Scholar
  11. [13]
    P. Erdős, Some results on additive number theory, Proc. Amer. Math. Soc., 5 (1954), 847–853.MathSciNetGoogle Scholar
  12. [14]
    P. Erdős, Some remarks on set theory. IV, Mich Math. J., 2 (1953-54), 169–173 (1955).CrossRefGoogle Scholar
  13. [15]
    P. Erdős and B. Volkmann, Additive Gruppen mit vorgegebener Hausdorffscher dimension. J. Reine Angew. Math., 221 (1966), 203–208.MathSciNetGoogle Scholar
  14. [16]
    P. Erdős, Set-theoretic, measure-theoretic, combinatorial and number-theoretic problems concerning point sets in Euclidean space, Real Anal. Exchange, 4, no. 2, (1978/79), 113–138.MathSciNetGoogle Scholar
  15. [17]
    P. Erdős, My Scottish Book Problems, in: The Scottish Book, Mathematics from the Scottish Café. Edited by R. Daniel Mauldin, Birkhäuser, Boston, Mass., 1981.Google Scholar
  16. [18]
    P. Erdős, K. Kunen, R. D. Mauldin, Some additive properties of sets of real numbers, Fund. Math., 113 (1981), 187–199.MathSciNetGoogle Scholar
  17. [19]
    P. Erdős, Some combinatorial, geometric and set theoretic problems in measure theory, in Measure Theory, Oberwolfach 1983, Lecture Notes in Mathematics 1089, Springer-Verlag (1984).Google Scholar
  18. [20]
    P. Erdős, S. Jackson, R. D. Mauldin, On partitions of lines and planes, Fund. Math., 145 (1994), 101–119.MathSciNetGoogle Scholar
  19. [21]
    K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge university press, Cambridge, 1986.Google Scholar
  20. [22]
    K. Falconer, Fractal Geometry, John Wiley & Sons Inc., Hoboken, NJ, second edition, 2003.CrossRefzbMATHGoogle Scholar
  21. [23]
    P. D. Humke, M. Laczkovich, Transference of Density, preprint, 2012.Google Scholar
  22. [24]
    D. Khoshnevisan, Probability, Graduate Studies in Mathematics, AMS, 2007.Google Scholar
  23. [25]
    L. A. Levin, The concept of a random sequence, Dokl. Akad. Nauk SSSR, 212 (1973), 548–550.MathSciNetGoogle Scholar
  24. [26]
    Ming Li and Paul Vitanyi, An introduction to Kolmogorov complexity and its applications, third ed., Texts in Computer Science, Springer, New York, 2008.Google Scholar
  25. [27]
    G. G. Lorentz, On a problem of additive number theory, Proc. Amer. Math. Soc., 5 (1954), 838–841.CrossRefzbMATHMathSciNetGoogle Scholar
  26. [28]
    J. H. Lutz, The dimensions of individual strings and sequences, Inform. and Comput., 187 (2003), no. 1, 49–79.CrossRefzbMATHMathSciNetGoogle Scholar
  27. [29]
    M. Laczkovich and I. Z. Rusza, Measure of sumsets and ejective sets I., Real Analysis Exchange, 22 (1996-1997), 153–166.MathSciNetGoogle Scholar
  28. [30]
    R. D. Mauldin, Some problems in set theory, analysis and geometry, in Paul Erdős and his Mathematics I, 493–505, Springer, 2002.Google Scholar
  29. [31]
    R. D. Mauldin and M. Urbanski, Conformal iterated function systems with applications to the geometry of continued fractions, Trans. Amer. Math. Soc., 351 (1999), 4995–5025.CrossRefzbMATHMathSciNetGoogle Scholar
  30. [32]
    Elvira Mayordomo, A Kolmogorov complexity characterization of constructive Hausdorff dimension, Inform. Process. Lett., 84 (2002), no. 1, 1–3.CrossRefzbMATHMathSciNetGoogle Scholar
  31. [33]
    I. Z. Ruzsa, On a problem of P. Erdős, Canad. Math. Bull., 15 (1972), 309–310.CrossRefzbMATHMathSciNetGoogle Scholar
  32. [34]
    I. Z. Ruzsa, Additive completion of lacunary sequences, Combinatorics, 21 (2001), 279–291.CrossRefzbMATHMathSciNetGoogle Scholar
  33. [35]
    R. E. Svetic, The Erdős similarity problem, Real Analysis Exchange, 26(2) (2000), 525–540.MathSciNetGoogle Scholar
  34. [36]
    Roger Webster, Convexity, Oxford University Press, 1994.Google Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag 2013

Authors and Affiliations

  • R. Daniel Mauldin
    • 1
  1. 1.Department of MathematicsUniversity of North TexasDentonUSA

Personalised recommendations