Advertisement

The Impact of Paul Erdős on Set Theory

  • Kenneth Kunen
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 25)

Abstract

This is a brief survey of some areas in set theory where the impact of Paul Erdős is strongly felt today. We omit topics in partition theory and graph theory, which are covered in the article by Péter Komjáth in this volume.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Bagemihl, The existence of an everywhere dense independent set, Michigan Math. J. 20 (1973) 112.MathSciNetGoogle Scholar
  2. [2]
    R. O. Davies, Partitioning the plane into denumberably many sets without repeated distances, Proc. Cambridge Philos. Soc. 72 (1972) 179–183.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    P. Erdős, Some remarks on set theory, Ann. of Math. (2) 44 (1943) 643–646. [1943–08]CrossRefGoogle Scholar
  4. [4]
    P. Erdős, Some remarks on set theory, Proc. Amer. Math. Soc. 1 (1950) 127–141. [1950–13]MathSciNetGoogle Scholar
  5. [5]
    P. Erdős, Some remarks on set theory III, Michigan Math. J. 2 (1954) 51–57. [1954–08]MathSciNetGoogle Scholar
  6. [6]
    P. Erdős, Some remarks on set theory IV, Michigan Math. J. 2 (1953-54) 169–173 (1955). [1955–14]CrossRefMathSciNetGoogle Scholar
  7. [7]
    P. Erdős, Set-theoretic, measure-theoretic, combinatorial, and number-theoretic problems concerning point sets in Euclidean space, Real Anal. Exchange 4 (1978/79) 113–138. [1978–40]MathSciNetGoogle Scholar
  8. [8]
    P. Erdős and A. Hajnal, On the structure of set-mappings, Acta Math. Acad. Sci. Hungar. 9 (1958) 111–131. [1958–12]CrossRefMathSciNetGoogle Scholar
  9. [9]
    P. Erdős and A. Hajnal, On a property of families of sets, Acta Math. Acad. Sci. Hungar. 12 (1961) 87–123. [1961–11]CrossRefMathSciNetGoogle Scholar
  10. [10]
    P. Erdős and A. Hajnal, On a classification of denumerable order types and an application to the partition calculus, Fund. Math. 51 (1962/1963) 117–129. [1962–06]MathSciNetGoogle Scholar
  11. [11]
    P. Erdős and A. Hajnal, Some remarks concerning our paper “On the structure of set mappings”. Non-existence of a two-valued σ-measure for the first uncountable inaccessible cardinal, Acta Math. Acad. Sci. Hungar. 13 (1962) 223–226. [1962–20]CrossRefMathSciNetGoogle Scholar
  12. [12]
    P. Erdős and A. Hajnal, On a problem of B. Jónsson, Bull. Acad. Polon. Sci. Sr. Sci. Math. Astr. Phys. 14 (1966) 19–23. [1966–05]Google Scholar
  13. [13]
    P. Erdős and A. Hajnal, Some remarks on set theory XI, Fund. Math. 81 (1974), 261–265. [1974–33]MathSciNetGoogle Scholar
  14. [14]
    P. Erdős, A. Hajnal, and A. Máté, Chain conditions on set mappings and free sets, Acta Sci. Math. (Szeged) 34 (1973) 69–79. [1973–03]MathSciNetGoogle Scholar
  15. [15]
    P. Erdős, S. Jackson, and R. D. Mauldin, On partitions of lines and space, Fund. Math. 145 (1994) 101–119.MathSciNetGoogle Scholar
  16. [16]
    P. Erdős, S. Jackson, and R. D. Mauldin, On infinite partitions of lines and space, Fund. Math. 152 (1997) 75–95.MathSciNetGoogle Scholar
  17. [17]
    P. Erdős and S. Kakutani, On non-denumerable graphs, Bull. Amer. Math. Soc. 49 (1943) 457–461. [1943–05]CrossRefMathSciNetGoogle Scholar
  18. [18]
    P. Erdős and P. Komjáth, Countable decompositions of R 2 and R 3. Discrete Comput. Geom. 5 (1990) 325–331.CrossRefMathSciNetGoogle Scholar
  19. [19]
    P. Erdős, K. Kunen, and R. D. Mauldin, Some additive properties of sets of real numbers, Fund. Math. 113 (1981) 187–199. [1981–28]MathSciNetGoogle Scholar
  20. [20]
    P. Erdős and M Makkai, Some remarks on set theory X, Studia Sci. Math. Hungar. 1 (1966) 157–159. [1966–19]MathSciNetGoogle Scholar
  21. [21]
    P. Erdős and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956) 427–489. [1956–02]CrossRefMathSciNetGoogle Scholar
  22. [22]
    P. Erdős and M. E. Rudin, A non-normal box product, in Infinite and Finite Sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. II, Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland, 1975, pp. 629–631. [1975–01]Google Scholar
  23. [23]
    P. Erdős and A. Tarski, On families of mutually exclusive sets, Ann. of Math. (2)44 (1943) 315–329. [1943–04]CrossRefGoogle Scholar
  24. [24]
    P. Erdős and A. Tarski, On some problems involving inaccessible cardinals, in Essays on the Foundations of Mathematics Magnes Press, Hebrew Univ., Jerusalem, 1961, pp. 50–82. [1961–14]Google Scholar
  25. [25]
    A. Hajnal, Proof of a conjecture of S. Ruziewicz, Fund. Math. 50 (1961/1962) 123–128.zbMATHMathSciNetGoogle Scholar
  26. [26]
    A. Hajnal and P. Hamburger, Set theory, Cambridge University Press, 1999.Google Scholar
  27. [27]
    A. Hajnal, I. Juhász, and S. Shelah, Strongly almost disjoint families, revisited, Fund. Math. 163 (2000) 13–23.zbMATHMathSciNetGoogle Scholar
  28. [28]
    F. Hausdorff, Grundzüge einer Theorie der Geordnete Mengen, Math. Ann. 65 (1908) 435–505.CrossRefzbMATHMathSciNetGoogle Scholar
  29. [29]
    T. Jech, Set Theory, The third millennium edition, Springer-Verlag, 2003.Google Scholar
  30. [30]
    A. Kanamori, The Higher Infinite. Large cardinals in set theory from their beginnings, Second edition, Springer-Verlag, 2003.Google Scholar
  31. [31]
    H. J. Keisler, Some applications of the theory of models to set theory, in Logic, Methodology and Philosophy of Science (Proc. 1960 Internat. Congr.), Stanford Univ. Press, 1962, pp. 80–86.Google Scholar
  32. [32]
    H. J. Keisler, Six classes of theories, J. Austral. Math. Soc. Ser. A 21 (1976) 257–266.CrossRefzbMATHMathSciNetGoogle Scholar
  33. [33]
    H. J. Keisler and A. Tarski, From accessible to inaccessible cardinals, Fund. Math. 53 (1963/1964) 225–308.MathSciNetGoogle Scholar
  34. [34]
    K. Kunen, Indescribability and the continuum, in Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I), pp. 199–203, Amer. Math. Soc., 1971.Google Scholar
  35. [35]
    K. Kunen, Elementary embeddings and infinitary combinatorics, J. Symbolic Logic 36 (1971) 407–413.CrossRefzbMATHMathSciNetGoogle Scholar
  36. [36]
    K. Kunen, Some comment on box products, in Infinite and Finite Sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. II, Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland, 1975, pp. 1011–1016.Google Scholar
  37. [37]
    K. Kunen, Partitioning Euclidean space, Math. Proc. Cambridge Philos. Soc. 102 (1987) 379–383. 05A17 (04A30 51M20)CrossRefzbMATHMathSciNetGoogle Scholar
  38. [38]
    K. Kunen, Set Theory, College Publications, 2011.Google Scholar
  39. [39]
    K. Kunen and F. D. Tall, Between Martin’s axiom and Souslin’s hypothesis. Fund. Math. 102 (1979) 173–181.zbMATHMathSciNetGoogle Scholar
  40. [40]
    J. Łoś, Linear equations and pure subgroups, Bull. Acad. Polon. Sci. Sr. Sci. Math. Astr. Phys. 7 (1959) 13–18.zbMATHGoogle Scholar
  41. [41]
    E. W. Miller, On a property of families of sets, Comptes Rendus Varsovie 30 (1937) 31–38.Google Scholar
  42. [42]
    W. Mitchell, Aronszajn trees and the independence of the transfer property, Ann. Math. Logic 5 (1972/73) 21–46.CrossRefzbMATHMathSciNetGoogle Scholar
  43. [43]
    M. E. Rudin, Countable box products of ordinals, Trans. Amer. Math. Soc. 192 (1974) 121–128.CrossRefzbMATHMathSciNetGoogle Scholar
  44. [44]
    J. H. Schmerl, Countable partitions of Euclidean space, Math. Proc. Cambridge Philos. Soc. 120 (1996) 7–12.CrossRefzbMATHMathSciNetGoogle Scholar
  45. [45]
    D. Scott, Measurable cardinals and constructible sets, Bull. Acad. Polon. Sci. Sr. Sci. Math. Astronom. Phys. 9 (1961) 521–524.zbMATHGoogle Scholar
  46. [46]
    W. Sierpiński, Hypothèse du Continu, Second Edition, Chelsea Publishing Company, 1956 (first printed in 1934).Google Scholar
  47. [47]
    S. Shelah, Stability, the f.c.p., and superstability; model theoretic properties of formulas in first order theory, Ann. Math. Logic 3 (1971) 271–362.CrossRefzbMATHMathSciNetGoogle Scholar
  48. [48]
    S. Shelah, A combinatorial problem; stability and order for models and theories in infinitary languages, Pacific J. Math. 41 (1972) 247–261.CrossRefzbMATHMathSciNetGoogle Scholar
  49. [49]
    R. M. Solovay, A nonconstructible Δ31 set of integers, Trans. Amer. Math. Soc. 127 (1967) 50–75.zbMATHMathSciNetGoogle Scholar
  50. [50]
    M. Souslin, Problème 3, Fundamenta Mathematicae 1 (1920) p. 223.Google Scholar
  51. [51]
    F. D. Tall, Large cardinals for topologists, in Surveys in General Topology, Academic Press, 1980, pp. 445–477.Google Scholar
  52. [52]
    A. Tarski, Some problems and results relevant to the foundations of set theory, in Logic, Methodology and Philosophy of Science (Proc. 1960 Internat. Congr.), Stanford Univ. Press, 1962, pp. 125–135.Google Scholar
  53. [53]
    S. Ulam, Zur Masstheorie in der algemeinen Mengenlehre, Fund Math. 16 (1930) 140–150.zbMATHGoogle Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag 2013

Authors and Affiliations

  • Kenneth Kunen
    • 1
  1. 1.University of WisconsinMadisonUSA

Personalised recommendations