Paul Erdős and Probabilistic Reasoning

  • Noga Alon
Part of the Bolyai Society Mathematical Studies book series (BSMS, volume 25)


One of the major contributions of Paul Erdős is the development of the Probabilistic Method and its applications in Combinatorics, Graph Theory, Additive Number Theory and Combinatorial Geometry. This short paper describes some of the beautiful applications of the method, focusing on the long-term impact of the work, questions and results of Erdős. This is mostly a survey, but it contains a few novel results as well.


Random Graph Probabilistic Reasoning Chromatic Number Vertex Coloring Ramsey Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. F. Ahlswede and L. H. Khachatrian, The complete intersection theorem for systems of finite sets, European J. Combin. 18 (1997), 125–136.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    R. F. Ahlswede and L. H. Khachatrian, The diametric theorem in Hamming spaces — optimal anticodes, Adv. in Appl. Math. 20 (1998), 429–449.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    M. Ajtai, J. Komlós and E. Szemerédi, A note on Ramsey numbers, J. Combinatorial Theory Ser. A 29 (1980), 354–360.CrossRefzbMATHGoogle Scholar
  4. [4]
    N. Alon, Degrees and choice numbers, Random Structures & Algorithms 16 (2000), 364–368.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    N. Alon, A non-linear lower bound for planar epsilon-nets, Proc. of the 51th IEEE FOCS (2010), 341–346. Also: Discrete and Computational Geometry 47 (2012), 235–244.Google Scholar
  6. [6]
    N. Alon, Restricted integer partition functions, Integers 13 (2013), A16, 9pp.Google Scholar
  7. [7]
    N. Alon, B. Bukh and B. Sudakov, Discrete Kakeya-type problems and small bases, Israel J. Math. 174 (2009), 285–301.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    N. Alon and D. J. Kleitman, Sum-free subsets, in: “A Tribute to Paul Erdőos” (A. Baker, B. Bollobás and A. Hajnal eds.), Cambridge University Press, Cambridge, England 1990, 13–26.CrossRefGoogle Scholar
  9. [9]
    N. Alon and M. Krivelevich, Testing k-colorability, SIAM J. Discrete Math. 15 (2002), 211–227.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    N. Alon and A. V. Kostochka, Hypergraph list coloring and Euclidean Ramsey Theory, Random Structures and Algorithms 39 (2011), 377–390.zbMATHMathSciNetGoogle Scholar
  11. [11]
    N. Alon, M. Krivelevich and B. Sudakov, Turán numbers of bipartite graphs and related Ramsey-type questions, Combinatorics, Probability and Computing 12 (2003), 477–494.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    N. Alon and V. Rödl, Asymptotically tight bounds for some multicolored Ramsey numbers, Combinatorica 25 (2005), 125–141.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    N. Alon and J. H. Spencer, The Probabilistic Method, Third Edition, Wiley, New York, 2008.CrossRefzbMATHGoogle Scholar
  14. [14]
    C. Bey and K. Engel, Old and new results for the weighted t-intersection problem via AK-methods, in: Numbers, information and complexity (Bielefeld, 1998), 45–74, Kluwer Acad. Publ., Boston, MA, 2000.CrossRefGoogle Scholar
  15. [15]
    B. Barak, A. Rao, R. Shaltiel and A. Wigderson, 2-source dispersers for subpolynomial entropy and Ramsey graphs beating the Frankl-Wilson construction, Proceedings of the 38th Annual ACM Symposium on Theory of Computing, ACM, New York, 2006, 671–680.Google Scholar
  16. [16]
    E. Blais, A. Weinstein and Y. Yoshida, Semi-strong coloring of intersecting hypergraphs, to appear.Google Scholar
  17. [17]
    T. Bohman, The triangle-free process, Adv. Math. 221 (2009), no. 5, 1653–1677.CrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    B. Bollobás, Random Graphs, Second Edition, Academic Press, London, 2001.CrossRefzbMATHGoogle Scholar
  19. [19]
    B. Bollobás, P. Erdőos, M. Simonovits and E. Szemerédi, Extremal graphs without large forbidden subgraphs, Ann. Discrete Math., 3 (1978), pp. 29–41.CrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    J. Bourgain, Estimates related to sumfree subsets of sets of integers, Israel J. Math. 97 (1997), 71–92.CrossRefzbMATHMathSciNetGoogle Scholar
  21. [21]
    E. R. Canfield and H. S. Wilf, On the growth of restricted integer partition functions, arXiv: 1009.4404, 2010.Google Scholar
  22. [22]
    F. Chung and R. L. Graham, Erdős on Graphs: His Legacy of Unsolved Problems, A. K. Peters, Wellesley, MA, 1998.Google Scholar
  23. [23]
    L. Danzer and B. Grünbaum, Űber zwei Probleme bezűglich konvexer Kőrper von P. Erdős und von V. L. Klee, Math. Z. 79 (1962), 95–99.CrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    I. Dinur and S. Safra, On the hardness of approximating minimum vertex cover, Ann. of Math. 162 (2005), 439–485.CrossRefzbMATHMathSciNetGoogle Scholar
  25. [25]
    S. Eberhard, B. Green and F. Manners, Sets of integers with no large sum-free subset, arXiv:1301.4579, 2013.Google Scholar
  26. [26]
    P. Erdőss, Some remarks on the theory of graphs, Bulletin of the Amer. Math. Soc. 53 (1947), 292–294.Google Scholar
  27. [27]
    P. Erdős, Problems and results in additive number theory, Colloque sur la Théorie des Nombres, Bruxelles, 1955, 127–137, George Thone, Liége; Masson and Cie, Paris, 1956.Google Scholar
  28. [28]
    P. Erdős, Graph theory and probability II, Canad. J. Math. 13 (1961), 346–352.CrossRefMathSciNetGoogle Scholar
  29. [29]
    P. Erdős, On a combinatorial problem, Nordisk. Mat. Tidskr. 11 (1963), 220–223.Google Scholar
  30. [30]
    _P. Erdős, On a combinatorial problem II, Acta. Math. Acad. Sci. Hungar. 15 (1964), 445–447.CrossRefMathSciNetGoogle Scholar
  31. [31]
    P. Erdős, Extremal problems in number theory, Proc. Sympos. Pure Math., Vol. VIII (1965), pp. 181–189.CrossRefGoogle Scholar
  32. [32]
    P. Erdős, On the construction of certain graphs, J. Combinatorial Theory 1 (1966), 149–153.CrossRefMathSciNetGoogle Scholar
  33. [33]
    P. Erdős, Some recent results on extremal problems in graph theory, in: Theory of Graphs (Rome, 1966) Gordon and Breach, New York, 1967, 117–123.Google Scholar
  34. [34]
    P. Erdős and Z. Füredi, The greatest angle among n points in the d-dimensional Euclidean space, Annals of Discrete Math. 17 (1983), 275–283.Google Scholar
  35. [35]
    P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer and E. G. Straus, Euclidean Ramsey theorems.I. J. Combinatorial Theory Ser. A 14 (1973), 341–363.CrossRefGoogle Scholar
  36. [36]
    P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer and E. G. Straus, Euclidean Ramsey theorems. II. Infinite and finite sets (Colloq., Keszthely, 1973) Vol. I, pp. 529–557. Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland, Amsterdam, 1975.Google Scholar
  37. [37]
    P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer and E. G. Straus, Euclidean Ramsey theorems. III. Infinite and finite sets (Colloq., Keszthely, 1973, Vol. I, pp. 559–583. Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland, Amsterdam, 1975.Google Scholar
  38. [38]
    P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, in: “Infinite and Finite Sets” (A. Hajnal et. al. eds), Colloq. Math. Soc. J. Bolyai 11, North Holland, Amsterdam, 1975, pp. 609–627.Google Scholar
  39. [39]
    P. Erdős and D.J. Newman, Bases for sets of integers, J. Number Theory 9 (1977), 420–425.CrossRefMathSciNetGoogle Scholar
  40. [40]
    P. Erdős, A. L. Rubin and H. Taylor, Choosability in graphs, Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium XXVI, 1979, 125–157.Google Scholar
  41. [41]
    P. Erdős and P. Turán, On a problem of Sidon in additive number theory and some related problems, J. London Math. Soc. 16 (1941), 212–215; Addendum (by P. Erdős), ibid. 19 (1944), 208.CrossRefMathSciNetGoogle Scholar
  42. [42]
    P. Erdős and J. L. Selfridge, On a combinatorial game, J. Combinatorial Theory Ser. A 14 (1973), 298–301.CrossRefMathSciNetGoogle Scholar
  43. [43]
    P. Erdős and E. Szemerédi, On sums and products of integers, in: Studies in pure mathematics, Birkhäuser, Basel (1983), 213–218.CrossRefGoogle Scholar
  44. [44]
    J. Fox and B. Sudakov, Dependent Random Choice, Random Structures and Algorithms 38 (2011), 1–32.CrossRefMathSciNetGoogle Scholar
  45. [45]
    P. Frankl, Extremal Set Systems, in: R. L. Graham, M. Grötschel and L. Lovász, Editors, Handbook of Combinatorics, North Holland, Amsterdam, 1995.Google Scholar
  46. [46]
    E. Friedgut, On the measure of intersecting families, uniqueness and stability, Combinatorica 28 (2008), 503–528.CrossRefzbMATHMathSciNetGoogle Scholar
  47. [47]
    Z. Füredi, On a Turán type problem of Erdős, Combinatorica 11 (1991), 75–79.CrossRefzbMATHMathSciNetGoogle Scholar
  48. [48]
    O. Goldreich, S. Goldwasser and D. Ron, Property testing and its connection to learning and approximation, J. ACM, 45 (1998), pp. 653–750.CrossRefzbMATHMathSciNetGoogle Scholar
  49. [49]
    R. L. Graham, B. L. Rothschild and J. H. Spencer, Ramsey Theory, Second Edition, Wiley, New York, 1990.zbMATHGoogle Scholar
  50. [50]
    W. T. Gowers, A new proof of Szemerédi’s theorem for arithmetic progressions of length four, Geom. Funct. Anal. 8 (1998), 529–551.CrossRefzbMATHMathSciNetGoogle Scholar
  51. [51]
    A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdős, Combinatorial theory and its applications, II (Proc. Colloq., Balatonfüred, 1969), pp. 601–623. North-Holland, Amsterdam, 1970.Google Scholar
  52. [52]
    D. Haussler and E. Welzl, ε-nets and simplex range queries, Discrete and Computational Geometry 2 (1987), 127–151.CrossRefzbMATHMathSciNetGoogle Scholar
  53. [53]
    P. E. Haxell and J. Verstraete, List coloring hypergraphs, Electron. J. Combin. 17 (2010), no. 1, Research Paper 129, 12 pp.Google Scholar
  54. [54]
    S. Janson, T. Luczak and A. Ruciński, Random Graphs, Wiley, New York, 2000.CrossRefzbMATHGoogle Scholar
  55. [55]
    T. Jensen and B. Toft, Graph Coloring Problems, John Wiley and Sons Inc., New York, 1995.zbMATHGoogle Scholar
  56. [56]
    J. H. Kim, The Ramsey number R(3, t) has order of magnitude t 2/ log t, Random Structures and Algorithms 7 (1995), 173–207.CrossRefzbMATHMathSciNetGoogle Scholar
  57. [57]
    A. Kostochka and V. Rödl, On graphs with small Ramsey numbers, J. Graph Theory 37 (2001), 198–204.CrossRefzbMATHMathSciNetGoogle Scholar
  58. [58]
    M. Lewko, An improved upper bound for the sum-free subset constant, J. Integer Seq. 13 (2010), no. 8, Article 10.8.3.Google Scholar
  59. [59]
    Z. Ljujić and M. Nathanson, On a partition problem of Canfield and Wilf, Integers,12A (2012), A11, 8pp.Google Scholar
  60. [60]
    M. Molloy and B. Reed, Graph Coloring and the Probabilistic Method, Springer-Verlag, Berlin, 2001.Google Scholar
  61. [61]
    J. Matoušek, R. Seidel and E. Welzl, How to net a lot with little: Small ε-nets for disks and halfspaces, In Proc. 6th Annu. ACM Sympos. Comput. Geom., pages 16–22, 1990.Google Scholar
  62. [62]
    J. Pach and G. Tardos, Tight lower bounds for the size of epsilon-nets, Computational geometry (SCG’11), ACM, New York, 2011, 458–463.Google Scholar
  63. [63]
    A. Pluhár, Greedy colorings of uniform hypergraphs, Random Structures Algorithms 35 (2009), no. 2, 216–221.CrossRefzbMATHMathSciNetGoogle Scholar
  64. [64]
    J. Radhakrishnan and A. Srinivasan, Improved bounds and algorithms for hypergraph two-coloring, Random Structures and Algorithms 16 (2000), 4–32.CrossRefzbMATHMathSciNetGoogle Scholar
  65. [65]
    V. Rödl and R. Duke, On graphs with small subgraphs of large chromatic number, Graphs Combin., 1 (1985), pp. 91–96.CrossRefzbMATHMathSciNetGoogle Scholar
  66. [67]
    P. Turán, On the theory of graphs, Colloquium Math. 3 (1954), 19–30.zbMATHMathSciNetGoogle Scholar
  67. [68]
    V. N. Vapnik and A. Ya Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities, Theory Probab. Appl., 16 (1971), 264–280.CrossRefzbMATHGoogle Scholar
  68. [69]
    V. G. Vizing, Coloring the vertices of a graph in prescribed colors (in Russian), Diskret. Analiz. No. 29, Metody Diskret. Anal. v. Teorii Kodov i Shem 101 (1976),3–10.MathSciNetGoogle Scholar
  69. [70]
    H. Wan, Upper bounds for Ramsey numbers R(3, 3, 3) and Schur numbers, J. Graph Theory 26 (1997), no. 3, 119–122CrossRefzbMATHMathSciNetGoogle Scholar
  70. [71]
    N. Wormald, The differential equations method for random graph processes and greedy algorithms, in: M. Karonski, H. J. Prömel (Eds.), Lectures on Approximation and Randomized Algorithms, PWN, Warsaw, 1999, pp. 73–155.Google Scholar

Copyright information

© János Bolyai Mathematical Society and Springer-Verlag 2013

Authors and Affiliations

  • Noga Alon
    • 1
  1. 1.Sackler School of Mathematics and Blavatnik School of Computer ScienceTel Aviv UniversityTel AvivIsrael

Personalised recommendations