Skip to main content

Bio-inspired Landing Approaches and Their Potential Use on Extraterrestrial Bodies

  • Chapter
Asteroids

Abstract

Landing on asteroids and extraterrestrial bodies is a critical stage for future exploration missions. Safe and soft landing on asteroids will be required even though the task is way harder than on the Earth due to the small size, irregular shape and variable surface properties of asteroids, as well as the low gravity and negligible drag experienced by the spacecraft. Optical guidance and navigation for autonomous landing on small celestial bodies have been studied in the past years with a focus on the closed-loop guidance, navigation, and control (GNC) systems (De Lafontaine1992, Kawaguchi et al. 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrows, G., Neely, C.: Mixed-mode VLSI optic flow sensors for in flight control of a Micro Air Vehicle. In: SPIE: Critical Technologies for the Future of Computing, San Diego, CA, USA, vol. 4109, pp. 52–63 (2000)

    Google Scholar 

  • Beyeler, A., Zufferey, J., Floreano, D.: Optipilot: control of take-off and landing using optic flow. In: European Micro Aerial Vehicle Conference, vol. 27, pp. 201–2019 (2009)

    Google Scholar 

  • Blanes, C.: Appareil visuel élémentaire pour la navigation à vue d’un robot mobile autonome. Master’s thesis, Master thesis in Neurosciences (DEA in French), Neurosciences, Advisor: N. Franceschini, Univ. Aix-Marseille II, France (1986)

    Google Scholar 

  • Blanes, C.: Guidage visuel d’un robot mobile autonome d’inspiration bionique. Ph.D. thesis, INP Grenoble, France (1991)

    Google Scholar 

  • Braun, R., Manning, R.: Mars exploration entry, descent and landing challenges. In: The Proceedings of the IEEE Aerospace Conference, Big Sky, Montana, Pasadena, CA, Jet Propulsion Laboratory, National Aeronautics and Space Administration (2006)

    Google Scholar 

  • Cheng, Y., Ansar, A.: Landmark based position estimation for pinpoint landing on mars. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1573–1578 (2005)

    Google Scholar 

  • Collett, T.S., Land, M.F.: Visual control of flight behaviour in the hoverfly Syritta pipiens. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 99(1), 1–66 (1975)

    Article  Google Scholar 

  • Conroy, J., Gremillion, G., Ranganathan, B., Humbert, J.: Implementation of wide-flield integration of optic flow for autonomous quadrotor navigation. Autonomous Robots 27, 189–198 (2009)

    Article  Google Scholar 

  • De Lafontaine, J.: Autonomous spacecraft navigation and control for comet landing. Journal of Guidance, Control, and Dynamics 15(3), 567–576 (1992)

    Article  Google Scholar 

  • Dubois-Matra, O., Parkes, S., Dunstam, M.: Testing and validation of planetary vision-based navigation systems with pangu. In: Proceedings of the 21st International Symposium on Space Flight Dynamics (ISSFD), Toulouse, France (2009)

    Google Scholar 

  • Expert, F., Viollet, S., Ruffier, F.: Outdoor field performances of insect-based visual motion sensors. Journal of Field Robotics 28(4), 529–541 (2011)

    Article  Google Scholar 

  • Expert, F., Roubieu, F.L., Ruffier, F.: Interpolation based ”time of travel” scheme in a visual motion sensor using a small 2d retina. In: The Proceedings of the IEEE Sensors Conference, Taipei, Taiwan, pp. 2231–2234 (2012)

    Google Scholar 

  • Flandin, G., Polle, B., Frapard, B., Vidal, P., Philippe, C., Voirin, T.: Vision based navigation for planetary exploration. In: Proceedings of the 32nd Annual AAS Rocky Mountain Guidance and Control Conference (2009)

    Google Scholar 

  • Franceschini, N.: Early processing of colour and motion in a mosaic visual system. Neurosc. Res. Suppl. 2, 17–49 (1985)

    Article  Google Scholar 

  • Franceschini, N.: De la mouche au robot: reconstruire pour mieux comprendre. In: Bloch, V. (ed.) Cerveaux et Machines, pp. 247–270 (1999)

    Google Scholar 

  • Franceschini, N., Chagneux, R.: Repetitive scanning in the fly compound eye. In: Göttingen Neurobiology Report, Thieme, vol. 2, p. 279 (1997)

    Google Scholar 

  • Franceschini, N., Riehle, A., Nestour, A.L.: Directionally Selective Motion Detection by Insect Neurons. In: Facets of Vision, pp. 360–390. Springer (1989)

    Google Scholar 

  • Franceschini, N., Pichon, J.M., Blanes, C.: Real time visuomotor control: from flies to robots. In: Proceedings of the IEEE Conference on Advanced Robotics (ICAR 1991), Pisa, Italy, pp. 931–935 (1991)

    Google Scholar 

  • Franceschini, N., Pichon, J.M., Blanes, C.: From insect vision to robot vision. Philosophical Transactions of the Royal Society B: Biological Sciences 337(1281), 283–294 (1992)

    Article  Google Scholar 

  • Franceschini, N., Pichon, J.M., Blanes, C.: Bionics of visuo-motor control. In: Gomi, T. (ed.) Evolutionary Robotics: From Intelligent Robots to Artificial Life, pp. 49–67. AAI Books, Ottawa (1997)

    Google Scholar 

  • Franceschini, N., Ruffier, F., Serres, J.: A bio-inspired flying robot sheds light on insect piloting abilities. Current Biology 17(4), 329–335 (2007)

    Article  Google Scholar 

  • Franceschini, N., Ruffier, F., Serres, J.: Obstacle avoidance and speed control in insects and micro-aerial vehicles. Acta Futura 3(4), 15–34 (2009)

    Google Scholar 

  • Franceschini, N., Ruffier, F., Serres, J.: Biomimetic Optic Flow Sensors and Autopilots for MAV Guidance. In: Encyclopedia of Aerospace Engineering, p. E309 (2010)

    Google Scholar 

  • Frapard, B., Champetier, C., Kemble, S., Parkinson, B., Strandmoe, S., Lang, M.: Vision-based gnc design for the leda mission. In: Proceedings of the 3rd International ESA Conference on Spacecraft GNC, Noordwijk, The Netherlands, pp. 411–421 (1996)

    Google Scholar 

  • Frapard, B., Polle, B., Flandin, G., Bernard, P., Vétel, C., Sembely, X., Mancuso, S.: Navigation for planetary approach and landing. In: Proceedings of the 5th International ESA Conference on Spacecraft GNC, Rome, Italy (2002)

    Google Scholar 

  • Garratt, M., Chahl, J.: Vision-based terrain following for an unmanned rotorcraft. Journal of Field Robotics 25, 284–301 (2008)

    Article  Google Scholar 

  • Green, W., Oh, P., Barrows, G.: Flying insect inspired vision for autonomous aerial robot maneuvers in near-earth environments. In: IEEE International Conference on Robotics and Automation (ICRA), vol. 1, pp. 2347–2352 (2004)

    Google Scholar 

  • Griffiths, S., Saunders, J., Curtis, A., Barber, B., McLain, T., Beard, R.: Maximizing miniature aerial vehicles. Robotics & Automation Magazine (IEEE) 13, 34–43 (2006)

    Article  Google Scholar 

  • Heisenberg, M., Wolf, R.: Vision in Drosophila. Springer, New York (1984)

    Book  Google Scholar 

  • Herisse, B., Hamel, T., Mahony, R., Russotto, F.X.: Landing a vtol unmanned aerial vehicle on a moving platform using optical flow. IEEE Transaction on Robotics 28(1), 77–89 (2012)

    Article  Google Scholar 

  • Hrabar, S., Sukhatme, G., Corke, P., Usher, K., Roberts, J.: Combined optic-flow and stereo-based navigation of urban canyons for a uav. Bio-inspired landing approaches and their potential use on extraterrestrial bodies. In: The Proceedings of the International Conference on Intelligent Robots and Systems (IROS), pp. 3309–3316 (2005)

    Google Scholar 

  • Indiveri, G., Kramer, J., Kocj, C.: System implementations of analog vlsi velocity sensors. IEEE Micro 16(5), 40–49 (1996)

    Article  Google Scholar 

  • Izzo, D., de Croon, G.: Landing with time-to-contact and ventral optic flow estimates. Journal of Guidance, Control, and Dynamics 35(4), 1362–1367 (2011)

    Article  Google Scholar 

  • Izzo, D., Weiss, N., Seidl, T.: Constant-optic-flow lunar landing: Optimality and guidance. Journal of Guidance, Control, and Dynamics 34, 1383–1395 (2011)

    Article  Google Scholar 

  • Janschek, K., Tchernykh, V., Beck, M.: Performance analysis for visual planetary landing navigation using optical flow and dem matching. In: Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit (2006)

    Google Scholar 

  • Jean-Marius, T., Strandmoe, S.E.: Integrated vision and navigation for a planetary lander. Technical report, AEROSPATIAL, Espace et Defense, Les Mureaux-France. ESA, Estec (1998)

    Google Scholar 

  • Kawaguchi, J., Hashimoto, T., Misu, T., Sawai, S.: An autonomous optical guidance and navigation around asteroids. Acta Astronautica 44(5), 267–280 (1999)

    Article  Google Scholar 

  • Kendoul, F., Nonami, K., Fantoni, I., Lozano, R.: An adaptive vision-based autopilot for mini flying machines guidance, navigation and control. Autonomous Robots 27, 165–188 (2009)

    Article  Google Scholar 

  • Kerhuel, L., Viollet, S., Franceschini, N.: The vodka sensor: A bioinspired hyperacute optical position sensing device. IEEE Sensors Journal 12(2), 315–324 (2012)

    Article  Google Scholar 

  • Kirschfeld, K., Franceschini, N.: Optische eigenschaften der ommatidien im komplexauge von Musca. Kybernetik 5, 47–52 (1968)

    Article  Google Scholar 

  • Koenderink, J., van Doorn, A.: Facts on optic flow. Biological Cybernetics 56, 247–254 (1987)

    Article  MATH  Google Scholar 

  • Landolt, O., Mitros, A.: Visual sensor with resolution enhancement by mechanical vibrations. Autonomous Robots 11(3), 233–239 (2001)

    Article  MATH  Google Scholar 

  • Mahony, R., Corke, P., Hamel, T.: A dynamic image-based visual servo control using centroid and optic flow features. Journal of Dynamic Systems, Measurement, and Control 130(1), 1–12 (2008)

    Article  Google Scholar 

  • Moeckel, R., Liu, S.C.: Motion detection circuits for a time-to-travel algorithm. In: IEEE International Symposium on Circuits and Systems (ISCAS), New orleans, LA, USA, pp. 3079–3082 (2007)

    Google Scholar 

  • Mourikis, A.I., Trawny, N., Roumeliotis, S.I., Johnson, A.E., Ansar, A., Matthies, L.: Vision-aided inertial navigation for spacecraft entry, descent, and landing. IEEE Transactions on Robotics 25(2), 264–280 (2009)

    Article  Google Scholar 

  • Netter, T., Franceschini, N.: A robotic aircraft that follows terrain using a neuromorphic eye. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2002, vol. 1, pp. 129–134 (2002)

    Google Scholar 

  • Orfanidis, S.J.: Introduction to signal processing. Prentice-Hall, Inc., Upper Saddle River (1995)

    Google Scholar 

  • Parkes, S., Dunstan, M., Matthews, D., Martin, I., Silva, V.: Lidar-based gnc for planetary landing: Simulation with PANGU. In: Proceedings of the DASIA (Data Systems in Aerospace), pp. 18.1–18.12 (2003)

    Google Scholar 

  • Parkes, S., Martin, I., Dunstan, M., Matthews, D.: Planet surface simulation with pangu. In: Proceedings of the 8th International Conference on Space Operations, SpaceOps (2004)

    Google Scholar 

  • Parkes, S.M., Silva, V.: Gnc sensors for planetary landers: a review. In: The Proceedings of the DASIA (Data Systems in Aerospace), pp. 1–9 (2002)

    Google Scholar 

  • Pichon, J., Blanes, C., Franceschini, N.: Visual guidance of a mobile robot equipped with a network of self-motion sensors. In: Mobile Robots IV, SPI, vol. 1195, pp. 44–53 (1989)

    Google Scholar 

  • Roubieu, F., Expert, F., Boyron, M., Fuschlock, B., Viollet, S., Ruffier, F.: A novel 1-gram insect based device measuring visual motion along optical directions. In: Proceedings of the IEEE Sensors Conference, Limerick, Ireland, pp. 687–690 (2011)

    Google Scholar 

  • Roubieu, F.L., Serres, J., Franceschini, N., Ruffier, F., Viollet, S.: A fully-autonomous hovercraft inspired by bees; wall-following and speed control in straight and tapered corridors. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), Guangzhou, China (2012)

    Google Scholar 

  • Roumeliotis, S., Johnson, A., Montgomery, J.: Augmenting inertial navigation with image-based motion estimation. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), vol. 4, pp. 4326–4333 (2002)

    Google Scholar 

  • Ruffier, F.: Pilote Automatique Biomimetique Systeme générique inspiré du contrôle visuomoteur des insectes pour: le décollage, le suivi de terrain, la réaction au vent et l’atterrissage automatiques d’un micro-aeronef. Ph.D. thesis, INP Grenoble, France (2004)

    Google Scholar 

  • Ruffier, F., Expert, F.: Visual motion sensing onboard a 50-g helicopter flying freely under complex VICON-lighting conditions. In: Proceedings of the International Conference on Complex Medical Engineering, Kobe, Japan, pp. 634–639 (2012)

    Google Scholar 

  • Ruffier, F., Franceschini, N.: Octave, a bioinspired visuo-motor control system for the guidance of micro-air vehicles. In: Rodriguez-Vazquez, A., Abbott, D., Carmona, R. (eds.) Proceedings of the Conference on Bioengineered and Bioinspired Systems, SPIE, Maspalomas, Spain, Bellingham, USA, vol. 5119, pp. 1–12 (2003)

    Google Scholar 

  • Ruffier, F., Franceschini, N.: Visually guided micro-aerial vehicle: automatic take off, terrain following, landing and wind reaction. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2004), Coimbra, Portugal (2004)

    Google Scholar 

  • Ruffier, F., Franceschini, N.: Optic flow regulation: the key to aircraft automatic guidance. Robotics and Autonomous Systems 50, 177–194 (2005)

    Article  Google Scholar 

  • Ruffier, F., Viollet, S., Amic, S., Franceschini, N.: Bio-inspired optical flow circuits for the visual guidance of micro-air vehicles. In: Proceedings of the IEEE International Symposium on Circuits and Systems Bio-inspired Landing Approaches and their Potential use on Extraterrestrial Bodies (ISCAS), Bangkok, Thailand, vol. 3, pp. 846–849 (2003)

    Google Scholar 

  • Schilstra, C., Hateren, J.H.: Blowfly flight and optic flow. 1. Thorax kinematics and flight dynamics. J. Exp. Biol. 202(Pt. 11), 1481–1490 (1999)

    Google Scholar 

  • Shang, Y., Palmer, P.: The dynamic motion estimation of a lunar lander. In: The Proceedings of the 21st ISSFD, Toulouse, France (2009)

    Google Scholar 

  • Strandmoe, S., Jean-Marius, T., Trinh, S.: Toward a vision based autonomous planetary lander. In: AIAA, AIAA–99–4154 (1999)

    Google Scholar 

  • Tammero, L.F., Dickinson, M.H.: The influence of visual landscape on the free flight behavior of the fruit fly drosophila melanogaster. Journal of Experimental Biology 205, 327–343 (2002)

    Google Scholar 

  • Tchernykh, V., Beck, M., Janschek, K.: An embedded optical flow processor for visual navigation using optical correlator technology. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, pp. 67–72 (2006)

    Google Scholar 

  • Trawny, N., Mourikis, A.I., Roumeliotis, S.I., Johnson, A.E., Montgomery, J.: Vision-aided inertial navigation for pin-point landing using observations of mapped landmarks. Journal of Field Robotics 24, 357–378 (2007)

    Article  Google Scholar 

  • Valette, F., Ruffier, F., Viollet, S., Seidl, T.: Biomimetic optic flow sensing applied to a lunar landing scenario. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2010), Anchorage, Alaska, pp. 2253–2260 (2010)

    Google Scholar 

  • Viollet, S., Franceschini, N.: Biologically-inspired visual scanning sensor for stabilization and tracking. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 204–209 (1999a)

    Google Scholar 

  • Viollet, S., Franceschini, N.: Visual servo system based on a biologically inspired scanning sensor. In: Sensor Fusion and Decentralized Control in Robotics II. SPIE, vol. 3839, pp. 144–155 (1999b)

    Google Scholar 

  • Viollet, S., Franceschini, N.: Super-accurate visual control of an aerial minirobot. In: Autonomous Minirobots for Research and Edutainment, AMIRE, Padderborn, Germany, pp. 215–224. Heinz Nixdorf Institute (2001)

    Google Scholar 

  • Wagner, H.: Flight performance and visual control of flight of the free-flying housefly (musca domestica l.) i. Organization of the flight motor. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 312, 527–551 (1986)

    Article  Google Scholar 

  • Watanabe, Y., Fabiani, P., Le Besnerais, G.: Simultaneous visual target tracking and navigation in a gps-denied environment. In: Proceedings of the International Conference on Advanced Robotics (ICAR), Munich, Germany, pp. 1–6 (2009)

    Google Scholar 

  • Watanabe, Y., Lesire, C., Piquereau, A., Fabiani, P., Sanfourche, M., Le Besnerais, G.: The ONERA ReSSAC unmanned autonomous helicopter: Visual air-to-ground target tracking in an urban environment. In: Proceedings of the American Helicopter Society 66th Annual Forum, Phoenix, AZ, USA (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raharijaona, T., Sabiron, G., Viollet, S., Franceschini, N., Ruffier, F. (2013). Bio-inspired Landing Approaches and Their Potential Use on Extraterrestrial Bodies. In: Badescu, V. (eds) Asteroids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39244-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39244-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39243-6

  • Online ISBN: 978-3-642-39244-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics