Skip to main content

Curing of Construction Composite Materials on Asteroids

  • Chapter
Asteroids
  • 3462 Accesses

Abstract

Human activity on asteroids will need constructions. It could be human habitat, base for mining machines, space station for communication, observation or deep space missions. The first constructions can be delivered from Earth, but an ability of space carriers are limited that limits the size and mass of the delivered constructions. Therefore, the extensive and long exploitation requires a technology to create new constructions on asteroid surface, under asteroid surface or near asteroid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allred, R., Hoyt, A.E., McElroy, P.M., Scarborozgh, S., Cadogan, D.P.: UV rigidizable carbon-reinforced isogrid inflatable booms. AIAA-2002-1202 (2002)

    Google Scholar 

  • Bar-Cohen, Y.: Transition of EAP material from novelty to practical applications – are we there yet? In: SPIE’s 8th Annual International Symposium on Smart Structures and Materials, Newport, USA, March 5-8, Paper No. 4329-02 (2001)

    Google Scholar 

  • Barbashev, E.A., Dushin, M.I., Ivonin, Y.N., Kozin, V.I., Nikishin, E.F., Panshin, B.I., Perov, B.V.: Some results of tests of polymer materials after exposition in conditions of free space. In: Space Technology and Material Science, Moscow, Nauka (1982)

    Google Scholar 

  • Bilen, S., Domonkos, M., Gallimore, A.: Simulating ionospheric plasma with a hollow cathode in a large vacuum chamber. J. of Spacecraft and Rockets 38, 617–621 (2001)

    Article  Google Scholar 

  • Briskman, V.A., Yudina, T.M., Kostarev, K.G., Kondyurin, A.V., Leontyev, V.B., Levkovich, M.G., Mashinsky, A.L., Nechitailo, G.S.: Polymerization in microgravity as a new process in space technology. Acta Astronautica 48, 169–180 (2001)

    Article  Google Scholar 

  • Cadogan, D., Stein, J., Grahne, M.: Inflatable composite habitat structures for Lunar and Mars exploration. In: 49th International Astronautical Congress, Melbourne, Australia, September 28-October 2, IAA-98-IAA.13.2.04 (1998)

    Google Scholar 

  • Cadogan, D., Grahne, M., Mikulas, M.: Inflatable space structures: a new paradigm for space structure design. In: 49th International Astronautical Congress, Melbourne, Australia, September 28-October 2, IAF-98-I.1.02 (1998a)

    Google Scholar 

  • Cadogan, D.P., Lin, J.K., Grahne, M.S.: Inflatable solar array technology. AIAA-99-1075 (1999)

    Google Scholar 

  • Cadogan, D.P., Scarborough, S.E.: Rigidizable materials for use in Gossamer Space Inflatable structures. AIAA-2001-1417 (2001)

    Google Scholar 

  • Cadogan, D.P., Scarborough, S.E., Lin, J.K., Sapna, G.H.: Shape memory composite development for use in Gossamer space inflatable structures. AIAA 2002-1372 (2002)

    Google Scholar 

  • Cassapakis, C., Thomas, M.: Inflatable structures technology development overview. AIAA-95-3738 (1995)

    Google Scholar 

  • Connell, J.W.: The effects of low-Earth orbit atomic oxygen exposure on Phenylphosphine oxide-containing polymers. Final report. Evaluation of Space Environment and Effects on Materials (ESEM). Appendix D, NASA Technical Report (1999)

    Google Scholar 

  • Czaubon, B., Paillos, A., Siffre, J., Thomas, R.: Mass spectrometric analysis of reaction products of fast oxygen atoms-material interactions. J. of Spacecraft and Rockets 35, 797–804 (1998)

    Article  Google Scholar 

  • Darooka, D.K., Jensen, D.W.: Advanced space structure concepts and their development. AIAA-2001-1257 (2001)

    Google Scholar 

  • Darooka, D.K., Scarborough, S.E., Cadogan, D.P.: An evaluation of inflatable truss frame for space applications. AIAA 2001-1614 (2001)

    Google Scholar 

  • de Groh, K.K., Banks, B.A., Hammerstrom, A.M., Youngstrom, E.E., Kaminski, C., Marx, L.M., Fine, E.S., Gummow, J.D., Wright, D.: MISSE PEACE Polymers: An International Space Station Environmental Exposure Experiment. In: Proceedings of the Conference on ISS Utilization - 2001, Cape Canaveral, Fl, AIAA 2001-4923 (2001); also in NASA TM-2001-211311

    Google Scholar 

  • de Groh, K.K., Morgana, M.: The Effect of Heating on the Degradation of Ground Laboratory and Space Irradiated Teflon FEP. NASA TM-2002-211704 (2002)

    Google Scholar 

  • Derbes, B.: Case studies in inflatable rigidizable structural concepts for space power. AIAA-99-1089 (1999)

    Google Scholar 

  • Dever, J., de Groh, K.K., Townsend, J.A., Wang, L.L.: Mechanical Properties Degradation of teflon FEP Returned from the Hubble Space telescope, NASA report 1998-206618, AIAA-98-0895 (1998)

    Google Scholar 

  • Dever, J., Semmel, C., Edwards, D., Messer, R., Peters, W., Carter, A., Puckett, D.: Radiation durability of candidate polymer films for the next generation space telescope sunshield. NASA TM 2002-211508 and AIAA-2002-1564 (2002)

    Google Scholar 

  • Dever, J.A., Pietromica, A.J., Stueber, T., Sechkar, E., Messer, R.: Simulated space vacuum ultraviolet (VUV) exposure testing for polymer films. NASA TM-2002-211337 and AIAA-2001-1054 (2002a)

    Google Scholar 

  • ECSS Space Environment Standard, ECSS E-10-04, Guide for LEO mission, ECSS-Q-70-04 (outgassing), ESA (2000)

    Google Scholar 

  • Favorskii, O.N., Kadaner, Ya, S.: About heat transfer in space. Visshaya Shkola, Moscow (1972)

    Google Scholar 

  • Freeland, R.E., Veal, G.R.: Significance of the inflatable antenna experiment technology. AIAA-98-2104 (1998)

    Google Scholar 

  • Fu, J.H., Graves, G.R.: Thermal Environments for Space Shuttle Payloads. In: AIAA Shuttle Environment and Operation II Conference Proceedings, p. 18 (1985)

    Google Scholar 

  • Golub, M.A., Wydeven, T.: Reactions of atomic oxygen (O(3P)) with various polymer films. Polymer Degradation and Stability 22, 325–338 (1988)

    Article  Google Scholar 

  • Gonzales, R.I., Phillips, S.H., Hoflund, G.B.: In situ oxygen atom erosion study of polyhedral oligomeric silsesquioxane-siloxane copolymer. J. of Spacecraft and Rockets 37, 463–467 (2000)

    Article  Google Scholar 

  • Grahne, M.S., Cadogan, D.P.: Inflatable solar arrays: revolutionary technology? ILC Dover, Inc., 1999-01-2551 and Sasakawa International Center for Space Architecture, SICSA outreach, Special Design Project Issue 1, No.7 (1988)

    Google Scholar 

  • Grossman, E., Lifshitz, Y., Wolan, J.T., Mount, C.K., Hoflund, G.B.: In situ erosion study of Kapton using novel hyperthermal oxygen atom source. J. of Spacecraft and Rockets 36, 75–78 (1999)

    Article  Google Scholar 

  • Grossman, G., Williams, G.: Inflatable concentrators for solar propulsion and dynamic space power. Journal of Solar Energy Engineering 112, 299 (1990)

    Article  Google Scholar 

  • Guidanean, K., Williams, G.T.: An inflatable rigidizable truss structure with complex joints. AIAA-98-2105 (1998)

    Google Scholar 

  • Haruvy, Y.: Risk Assessment of Atomic-Oxygen-Effected Surface Erosion and Induced Outgassing of Polymeric Materials in LOE Space Systems. ESA Journal 14, 109–119 (1990)

    Google Scholar 

  • Iwata, M., Ohnishi, A., Hirosawa, H., Tohyama, F.: Measurement and Evaluation of Thermal Control Material with Polyimide for Space Use. J. of Spacecraft and Rockets 38, 504–509 (2001)

    Article  Google Scholar 

  • Kato, S., Takeshita, Y., Sakai, Y., Muragishi, O., Shibayama, Y., Natori, M.: Concept of inflatable elements supported by truss structure for reflector application. Acta Astronautica 19, 539–553 (1989)

    Article  Google Scholar 

  • Kiefer, R.L., Orwold, R.A., Harrison, J.E., Ronesi, V.M., Thibeault, S.A.: The effects of the space environment on Polyetherimide films. Final report. Evaluation of Space Environment and Effects on Materials (ESEM), Appendix C, NASA Technical Report (1999)

    Google Scholar 

  • Klein, T.F., Lesieutre, G.A.: Space environment effects on damping of polymer matrix carbon fiber composites. J. of Spacecraft and Rockets 37, 519–525 (2000)

    Article  Google Scholar 

  • Klyachkin, Y.S., Trushnikov, V.A., Kondyurin, A.V., Imankulova, S.A.: Study of the nature of interaction of EPDM-40 rubber with an epoxy adhesive. J. Adhesion Science and Technology 6, 1137–1145 (1992)

    Article  Google Scholar 

  • Kondyurin, A.V.: Building the shells of large space stations by the polymerisation of epoxy composites in open space. Plasticheskie massy 8: 25. Translated in Int. Polymer Sci. and Technol. 25(4), T/78 (1997)

    Google Scholar 

  • Kondyurin, A.: Large size station on Mars surface by the way of polymerization of composite polymer material. In: Fourth Canadian Space Exploration Workshop. Science Payloads for Mars, Abstracts, Ottawa, Canada, November 15-16 (2002)

    Google Scholar 

  • Kondyurin, A.: Direct Curing of Polymer Construction Material in Simulated Earth’s Moon Surface Environment. Journal of Space Craft and Rockets 48, 378–384 (2011)

    Google Scholar 

  • Kondyurin, A.: Curing of composite materials for an inflatable construction on the moon. In: Badescu, V. (ed.) Moon. Prospective Energy and Material Resources, vol. 102, pp. 503–518. Springer, Heidelberg (2012)

    Google Scholar 

  • Kondyurin, A., Mesyats, G., Klyachkin, Y.: Creation of High-Size Space Station by Polymerization of Composite Materials in Free Space. J. of the Japan Soc. of Microgravity Appl. 15, 61–65 (1998)

    Google Scholar 

  • Kondyurin, A., Kostarev, K., Bagara, M.: Polymerization processes of epoxy plastic in simulated free space conditions. Acta Astronautica 48, 109–113 (2001)

    Article  Google Scholar 

  • Kondyurin, A., Lauke, B., Richter, E.: Polymerization Process of Epoxy Matrix Composites under Simulated Free Space Conditions. High Performance Polymers 16, 163–175 (2004)

    Article  Google Scholar 

  • Kondyurin, A., Bilek, M.: Ion Beam Treatment of Polymers. Application aspects from medicine to space. Elsevier, Oxford (2008)

    Google Scholar 

  • Kondyurin, A.V., Komar, L.A., Svistkov, A.L.: Modelling of curing of composite materials for the inflatable structure of a lunar space base. Mechanics of Composite Materials and Constructions 15, 512–526 (2009)

    Google Scholar 

  • Kondyurin, A.V., Nechitailo, G.S.: Composite material for Inflatable Structures Photocured under Space Flight Conditions. Cosmonautics and Rockets 3(56), 182–190 (2009a)

    Google Scholar 

  • Kondyurin, A.V., Komar, L.A., Svistkov, A.L.: Modelling of curing reaction kinetics in composite material based on epoxy matrix. Mechanics of Composite Materials 16, 597–611 (2010)

    Google Scholar 

  • Kondyurin, A., Kondyurina, I., Bilek, M.: Composite materials with uncured epoxy matrix exposed in stratosphere during NASA stratospheric balloon flight (2010a), http://arxiv.org/pdf/1008.5236

  • Kondyurin, A., Kondyurina, I., Bilek, M., de Groh, K.: Composite materials with uncured epoxy matrix exposed in stratosphere during NASA stratospheric balloon flight. NASA TM 216512 (2013)

    Google Scholar 

  • Kondyurina, I., Kondyurin, A., Lauke, B., Figiel, L., Vogel, R., Reuter, U.: Polymerisation of Composite Materials in Space Environment for Development of a Moon Base. Advances in Space Research 37, 109–115 (2006)

    Article  Google Scholar 

  • Koontz, S., Leger, L., Albyn, K., Cross, J.: Vacuum ultraviolet radiation / atomic oxygen synergism in materials reactivity. J. of Spacecraft 27, 346–348 (1989)

    Article  Google Scholar 

  • Koontz, S., Albyn, K., Leger, L.: Atomic oxygen testing with thermal atom systems: a critical evaluation. J. of Spacecraft 28, 315–323 (1991)

    Article  Google Scholar 

  • Kroshkin, M.G.: Physical-chemical bases of space studies. Mashinostroenie, Moscow (1969)

    Google Scholar 

  • Lai, S.T., Della-Rose, D.J.: Spacecraft charging at Geosynchronous altitudes: new evidence of existence of critical temperature. J. of Spacecraft and Rockets 38, 922–928 (2001)

    Article  Google Scholar 

  • Lee, C.-H., Chen, L.W.: Reactive probability of atomic oxygen with material surfaces in low Earth orbit. J. of Spacecraft and Rockets 37, 252–256 (2000)

    Article  Google Scholar 

  • Lura, F., Hagelschuler, D., Abraimov, V.V.: The complex simulation of essential space environment factors for the investigation of materials and surfaces for space applications. KOBE. DLR paper, Berlin, Germany (2003)

    Google Scholar 

  • Mesyats, G., Klyachkin, Y., Gavrilov, N., Kondyurin, A.: Adhesion of Polytetrafluorethylene modified by an ion beam. Vacuum 52, 285–289 (1999)

    Article  Google Scholar 

  • Pippin, H.G.: Final report on analysis of Boeing specimens flown on the effects of space environment on materials experiment. Boeing Phantom Works (1999)

    Google Scholar 

  • Purvis, C.K., Garrett, H.B., Whittlesey, A.C., Stevens, N.J.: Design guidelines for assessing and controlling spacecraft charging effects. NASA TP-2361 (1984)

    Google Scholar 

  • Sandy, C.R.: Next generation space telescope inflatable sunshield development. ILC Dover, Inc. (2000)

    Google Scholar 

  • Yu, S., Efremov, I., Blagov, V., Cherniavskiy, A., Yu, K., Tziganko, O., Medzmariahvili, E., Kinteraya, G., Bedukadze, G., Datashvili, L., Djanikashvili, M., Khatiashvili, N.: Space Experiment REFLECTOR on Orbital Station MIR. In: European Conference on Spacecraft Structures, Materials and Mechanical Testing. ESTEC, Noordwijk, The Netherlands (2000)

    Google Scholar 

  • Simburger, E.J., Matsumoto, J., Lin, J., Knoll, C., Rawal, S., Perry, A., Barnett, D., Peterson, T., Kerslake, T., Curtis, H.: Development of a multifunctional inflatable structure for the powersphere concept. AIAA 2002-1707 (2002)

    Google Scholar 

  • Teichman, L.A., Slemp, W.S., Witte Jr., W.G.: Evaluation of selected thermal control coatings for long-life space structures. NASA TM-4319 (1992)

    Google Scholar 

  • Veldman, S.L., Vermeeren, C.A.J.R.: Inflatable structures in aerospace engineering - an overview. ESA paper (2002)

    Google Scholar 

  • Walter, H.U.: Fluid sciences and materials science in space. A European Perspective. Springer, Berlin (1987)

    Google Scholar 

  • Willey, C.E., Schulze, R.C., Bokulic, R.S., Skullney, W.E., Lin, J.K.H., Cadogan, D.P., Knoll, C.F.: A Hybrid Inflatable Dish Antenna System for Spacecraft. AIAA 2001-1258 (2001)

    Google Scholar 

  • Wilson, A.: A history of balloon satellites. J. of the British Interplanetary Society 34, 10–22 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kondyurin, A. (2013). Curing of Construction Composite Materials on Asteroids. In: Badescu, V. (eds) Asteroids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39244-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39244-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39243-6

  • Online ISBN: 978-3-642-39244-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics