Skip to main content

Experimental Investigation of Sources of Error in Robot Machining

  • Conference paper
Robotics in Smart Manufacturing (WRSM 2013)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 371))

Included in the following conference series:

Abstract

This document is divided into two parts. First a survey is given presenting sources of error in robot machining and outlining their dependencies. Environment dependent, robot dependent and process dependent errors are addressed. The second part analyses the errors according to their source, magnitude and frequency spectrum. Experiments under different conditions represent a typical set of industrial applications and allow a qualified evaluation. This analysis enables the qualified choice of suitable compensation mechanisms in order to reduce the errors in robot machining and to increase machining accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. International Federation of Robotics: World Robotics 2007. Statistical Yearbook (2008)

    Google Scholar 

  2. COMET, 2011, EU/FP7-project: Plug-and-produce COmponents and METhods for adaptive control of industrial robots enabling cost effective, high precision manufacturing in factories of the future, http://www.cometproject.eu (accessed January 2013)

  3. Puzik, A.: Genauigkeitssteigerung bei der spanenden Bearbeitung mit Industrierobotern durch Fehlerkompensation mit 3D-Ausgleichsaktorik. Dissertation, University of Stuttgart, Fraunhofer IPA (2011)

    Google Scholar 

  4. Puzik, A., Pott, A., Meyer, C., Verl, A.: Industrial robots for machining processes in combination with an additional actuation mechanism for error compensation. In: Proceedings of 7th Int. Conf. on Manufacturing Research (ICMR), Warwick (2009)

    Google Scholar 

  5. Standard ISO 9283: Manipulating industrial robots – Performance criteria and related test methods (1998)

    Google Scholar 

  6. Siciliano, B., Kathib, O.: Handbook of Robotics. Springer, New York (2008)

    Book  MATH  Google Scholar 

  7. Shiakolas, P.S., Conrad, K.L., Yih, T.C.: On the accuracy, repeatability, and degree of influence of kinematics parameters for industrial robots. International Journal of Modelling and Simulation 22, 245–254 (2002)

    Google Scholar 

  8. Mustafa, S.K., Pey, Y.T., Yang, G., Chen, I.: A Geometrical Approach for Online Error Compensation of Industrial Manipulator. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Montreal, Canada, July 6-9, pp. 738–743 (2010)

    Google Scholar 

  9. Breth, J.F., Vasselin, E., Lefebvre, D., Dakyo, B.: Determination of the Repeatability of a Kuka Robot Using the Stochastic Ellipsoid Approach. In: Proceedings of IEEE International Conference on Robotics and Automation Barcelona, Spain, pp. 4339–4344 (2005)

    Google Scholar 

  10. Elatta, A.Y., Gen, L.P., Zhi, F.L., Daoyuan, Y., Fei, L.: An Overview of Robot Calibration. Information Technology Journal 3, 74–78 (2004)

    Article  Google Scholar 

  11. Heisel, U., Richter, F., Wurst, K.-H.: Thermal behavior of industrial robots and possibilities for errors compensation. CIRP Annals - Manufacturing Technology 46, 283–286 (1997)

    Article  Google Scholar 

  12. Pan, Z., Polden, J., Larkin, N., Van Duin, S., Norrish, J.: Recent progress on programming methods for industrial robots. Robotics and Computer-Integrated Manufacturing 28, 87–94 (2012)

    Article  Google Scholar 

  13. Tarn, T.J., Song, M., Xi, M., Ghosh, B.J.: Multi-Sensor Fusion Scheme for Calibration-Free Stereo Vision in a Manufacturing Workcell. In: Proceedings of IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 416–423 (1996)

    Google Scholar 

  14. Legnani, G., Tosi, D., Fassi, I., Giberti, I., Cinquemani, S.: The ”point of isotropy” and other properties of serial and parallel manipulators. Mechanism and Machine Theory 45, 1407–1423 (2010)

    Article  MATH  Google Scholar 

  15. Dietz, T., Schneider, U., Barho, M., Oberer-Treitz, S., Drust, M., Hollmann, R., Hägele, M.: Programming System for Efficient Use of Robots for Deburring in SME Environments. In: Proceedings of 7th German Conference on Robotics (2012)

    Google Scholar 

  16. Oh, Y.T.: Influence of the joint angular characteristics on the accuracy of industrial robots. Industrial Robot: An International Journal 38, 406–418 (2011)

    Article  Google Scholar 

  17. Erkaya, S.: Investigation of joint clearance effects on welding robot manipulators. Robotics and Computer-Integrated Manufacturing 28, 449–457 (2012)

    Article  Google Scholar 

  18. Gong, C., Yuan, J., Ni, J.: Nongeometric error identification and compensation for robotic system by inverse calibration. International Journal of Machine Tools and Manufacture 40, 2119–2137 (2000)

    Article  Google Scholar 

  19. Ruderman, M., Hoffmann, F., Bertram, T.: Modeling and Identification of Elastic Robot Joints With Hysteresis and Backlash. IEEE Transactions on Industrial Electronics 56, 3840–3847 (2009)

    Article  Google Scholar 

  20. Kumagai, S., Ohishi, K., Miyazaki, T.: High Performance Robot Motion Control Based on Zero Phase Error Notch Filter and D-PD Control. In: IEEE International Conference on Mechatronics, Malaga, Spain, pp. 1–6 (2009)

    Google Scholar 

  21. Marton, L., Lantos, B.: Friction and backlash measurement and identification method for robotic arms. In: IEEE International Conference on Advanced Robotics, pp. 1–6 (2009)

    Google Scholar 

  22. Thomsen, S., Fuchs, F.W.: Speed Control of Torsional Drive Systems with Backlash. In: Proceedings of 13th European Conference on Power Electronics and Applications, pp. 1–10 (2009)

    Google Scholar 

  23. Carvalho Bittencourt, A., Wernholt, E., Sander-Tavallaey, S., Brogardh, T.: An Extended Friction Model to capture Load and Temperature effects in Robot Joints. In: IEEE International Conference on Intelligent Robots and Systems, Taipei, pp. 6161–6167 (2010)

    Google Scholar 

  24. Jin, M., Jin, Y., Chang, P.H., Choi, C.: High-Accuracy Trajectory Tracking of Industrial Robot Manipulators Using Time Delay Estimation and Terminal Sliding Mode. In: Proceedings of 35th Annual Conference of IEEE Industrial Electronics, pp. 3095–3099 (2009)

    Google Scholar 

  25. Merlet, J.P.: Interval analysis for certified numerical solution of problems in robotics. International Journal of Applied Mathematics and Computer Science 19, 399–412 (2009)

    Article  Google Scholar 

  26. Zhang, H., Wang, J., Zhang, G., Gan, Z., Pan, Z., Cui, H., Zhu, Z.: Machining with Flexible Manipulator: Toward Improving Robotic Machining Performance. In: Proceedings of IEEE International Conference on Advanced Intelligent Mechatronics, Monterey, California, USA, pp. 1127–1132 (2005)

    Google Scholar 

  27. Zhang, H., Pan, Z.: Robotic Machining: Material Removal Rate Control with a Flexible Manipulator. In: Proceedings of IEEE Conference on Robotics, Automation and Mechatronics, pp. 30–35 (2008)

    Google Scholar 

  28. Pa, Z., Zengxi, P., Hui, Z., Zhub, Z., Wanga, J.: Chatter analysis of robotic machining process. Journal of materials processing technology 173, 301–309 (2006)

    Article  Google Scholar 

  29. Quintana, G., Ciurana, J.: Chatter in machining processes: A review. International Journal of Machine Tools and Manufacture 51, 363–376 (2011)

    Article  Google Scholar 

  30. Liu, X.-W., Cheng, K., Webb, D., Longstaf, A.P., Widiyarto, M.H.: Improved dynamic cutting force model in peripheral milling. Part II: experimental verification and prediction. International Journal of Advanced Manufacturing Technology 24, 794–805 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schneider, U., Ansaloni, M., Drust, M., Leali, F., Verl, A. (2013). Experimental Investigation of Sources of Error in Robot Machining. In: Neto, P., Moreira, A.P. (eds) Robotics in Smart Manufacturing. WRSM 2013. Communications in Computer and Information Science, vol 371. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39223-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39223-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39222-1

  • Online ISBN: 978-3-642-39223-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics