Skip to main content

Strong Bounds for Evolution in Networks

  • Conference paper
Automata, Languages, and Programming (ICALP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7966))

Included in the following conference series:

Abstract

This work extends what is known so far for a basic model of evolutionary antagonism in undirected networks (graphs). More specifically, this work studies the generalized Moran process, as introduced by Lieberman, Hauert, and Nowak [Nature, 433:312-316, 2005], where the individuals of a population reside on the vertices of an undirected connected graph. The initial population has a single mutant of a fitness value r (typically r > 1), residing at some vertex v of the graph, while every other vertex is initially occupied by an individual of fitness 1. At every step of this process, an individual (i.e. vertex) is randomly chosen for reproduction with probability proportional to its fitness, and then it places a copy of itself on a random neighbor, thus replacing the individual that was residing there. The main quantity of interest is the fixation probability, i.e. the probability that eventually the whole graph is occupied by descendants of the mutant. In this work we concentrate on the fixation probability when the mutant is initially on a specific vertex v, thus refining the older notion of Lieberman et al. which studied the fixation probability when the initial mutant is placed at a random vertex. We then aim at finding graphs that have many “strong starts” (or many “weak starts”) for the mutant. Thus we introduce a parameterized notion of selective amplifiers (resp. selective suppressors) of evolution. We prove the existence of strong selective amplifiers (i.e. for h(n) = Θ(n) vertices v the fixation probability of v is at least \(1-\frac{c(r)}{n}\) for a function c(r) that depends only on r), and the existence of quite strong selective suppressors. Regarding the traditional notion of fixation probability from a random start, we provide strong upper and lower bounds: first we demonstrate the non-existence of “strong universal” amplifiers, and second we prove the Thermal Theorem which states that for any undirected graph, when the mutant starts at vertex v, the fixation probability at least \((r-1) / (r+\frac{\deg v}{\deg_{\min}})\). This theorem (which extends the “Isothermal Theorem” of Lieberman et al. for regular graphs) implies an almost tight lower bound for the usual notion of fixation probability. Our proof techniques are original and are based on new domination arguments which may be of general interest in Markov Processes that are of the general birth-death type.

This work was partially supported by (i) the FET EU IP Project MULTIPLEX (Contract no 317532), (ii) the ERC EU Grant ALGAME (Agreement no 321171), and (iii) the EPSRC Grant EP/G043434/1. The full version of this paper is available at  http://arxiv.org/abs/1211.2384

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldous, D., Fill, J.: Reversible Markov Chains and Random Walks on Graphs. Monograph in preparation, http://www.stat.berkeley.edu/aldous/RWG/book.html

  2. Antal, T., Scheuring, I.: Fixation of strategies for an evolutionary game in finite populations. Bulletin of Math. Biology 68, 1923–1944 (2006)

    Article  MathSciNet  Google Scholar 

  3. Broom, M., Hadjichrysanthou, C., Rychtar, J.: Evolutionary games on graphs and the speed of the evolutionary process. Proceedings of the Royal Society A 466(2117), 1327–1346 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Broom, M., Hadjichrysanthou, C., Rychtar, J.: Two results on evolutionary processes on general non-directed graphs. Proceedings of the Royal Society A 466(2121), 2795–2798 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Broom, M., Rychtar, J.: An analysis of the fixation probability of a mutant on special classes of non-directed graphs. Proceedings of the Royal Society A 464(2098), 2609–2627 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Broom, M., Rychtar, J., Stadler, B.: Evolutionary dynamics on small order graphs. Journal of Interdisciplinary Mathematics 12, 129–140 (2009)

    Article  MATH  Google Scholar 

  7. Sasaki, A., Taylor, C., Fudenberg, D., Nowak, M.A.: Evolutionary game dynamics in finite populations. Bulletin of Math. Biology 66(6), 1621–1644 (2004)

    Article  MathSciNet  Google Scholar 

  8. Diáz, J., Goldberg, L., Mertzios, G., Richerby, D., Serna, M., Spirakis, P.: Approximating fixation probabilities in the generalized moran process. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 954–960 (2012)

    Google Scholar 

  9. Durrett, R.: Lecture notes on particle systems and percolation. Wadsworth Publishing Company (1988)

    Google Scholar 

  10. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press (2010)

    Google Scholar 

  11. Gintis, H.: Game theory evolving: A problem-centered introduction to modeling strategic interaction. Princeton University Press (2000)

    Google Scholar 

  12. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press (1998)

    Google Scholar 

  13. Imhof, L.A.: The long-run behavior of the stochastic replicator dynamics. Annals of applied probability 15(1B), 1019–1045 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kandori, M., Mailath, G.J., Rob, R.: Learning, mutation, and long run equilibria in games. Econometrica 61(1), 29–56 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Karlin, S., Taylor, H.: A First Course in Stochastic Processes, 2nd edn. Academic Press, NY (1975)

    MATH  Google Scholar 

  16. Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Nature 433, 312–316 (2005)

    Article  Google Scholar 

  17. Liggett, T.M.: Interacting Particle Systems. Springer (1985)

    Google Scholar 

  18. Mertzios, G.B., Nikoletseas, S., Raptopoulos, C., Spirakis, P.G.: Natural models for evolution on networks. In: Chen, N., Elkind, E., Koutsoupias, E. (eds.) Internet and Network Economics. LNCS, vol. 7090, pp. 290–301. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Moran, P.A.P.: Random processes in genetics. Proceedings of the Cambridge Philosophical Society 54, 60–71 (1958)

    Article  MATH  Google Scholar 

  20. Nowak, M.A.: Evolutionary Dynamics: Exploring the Equations of Life. Harvard University Press (2006)

    Google Scholar 

  21. Ohtsuki, H., Nowak, M.A.: Evolutionary games on cycles. Proceedings of the Royal Society B: Biological Sciences 273, 2249–2256 (2006)

    Article  Google Scholar 

  22. Rychtář, J., Stadler, B.: Evolutionary dynamics on small-world networks. International Journal of Computational and Mathematical Sciences 2(1), 1–4 (2008)

    MATH  Google Scholar 

  23. Sandholm, W.H.: Population games and evolutionary dynamics. MIT Press (2011)

    Google Scholar 

  24. Taylor, C., Iwasa, Y., Nowak, M.A.: A symmetry of fixation times in evoultionary dynamics. Journal of Theoretical Biology 243(2), 245–251 (2006)

    Article  MathSciNet  Google Scholar 

  25. Traulsen, A., Hauert, C.: Stochastic evolutionary game dynamics. In: Reviews of Nonlinear Dynamics and Complexity, vol. 2. Wiley, NY (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mertzios, G.B., Spirakis, P.G. (2013). Strong Bounds for Evolution in Networks. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds) Automata, Languages, and Programming. ICALP 2013. Lecture Notes in Computer Science, vol 7966. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39212-2_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39212-2_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39211-5

  • Online ISBN: 978-3-642-39212-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics