Advertisement

A Guided Tour in Random Intersection Graphs

  • Paul G. Spirakis
  • Sotiris Nikoletseas
  • Christoforos Raptopoulos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7966)

Abstract

Random graphs, introduced by P. Erdős and A. Rényi in 1959, still attract a huge amount of research in the communities of Theoretical Computer Science, Algorithms, Graph Theory, Discrete Mathematics and Statistical Physics. This continuing interest is due to the fact that, besides their mathematical beauty, such graphs are very important, since they can model interactions and faults in networks and also serve as typical inputs for an average case analysis of algorithms. The modeling effort concerning random graphs has to show a plethora of random graph models; some of them have quite elaborate definitions and are quite general, in the sense that they can simulate many other known distributions on graphs by carefully tuning their parameters.

Keywords

Random Graph Chromatic Number Hamilton Cycle Maximum Clique Intersection Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Behrisch, M., Taraz, A., Ueckerdt, M.: Coloring random intersection graphs and complex networks. SIAM J. Discrete Math. 23, 288–299 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cooper, C., Frieze, A.: The Cover Time of Sparse Random Graphs. In: Random Structures and Algorithms, vol. 30, pp. 1–16. John Wiley & Sons, Inc. (2007)Google Scholar
  3. 3.
    Efthymiou, C., Spirakis, P.G.: Sharp thresholds for Hamiltonicity in random intersection graphs. Theor. Comput. Sci. 411(40-42), 3714–3730 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Fill, J.A., Sheinerman, E.R., Singer-Cohen, K.B.: Random intersection graphs when m = ω(n): an equivalence theorem relating the evolution of the G(n, m, p) and G(n, p) models. Random Struct. Algorithms 16(2), 156–176 (2000)zbMATHCrossRefGoogle Scholar
  5. 5.
    Frieze, A.: On the Independence Number of Random Graphs. Disc. Math. 81, 171–175 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Godehardt, E., Jaworski, J.: Two models of Random Intersection Graphs for Classification. In: Opitz, O., Schwaiger, M. (eds.). Studies in Classification, Data Analysis and Knowledge Organisation, pp. 67–82. Springer, Heidelberg (2002)Google Scholar
  7. 7.
    Karoński, M., Sheinerman, E.R., Singer-Cohen, K.B.: On Random Intersection Graphs: The Subgraph Problem. Combinatorics, Probability and Computing Journal 8, 131–159 (1999)zbMATHCrossRefGoogle Scholar
  8. 8.
    Łuczak, T.: The chromatic number of random graphs. Combinatorica 11(1), 45–54 (2005)Google Scholar
  9. 9.
    Nikoletseas, S., Raptopoulos, C., Spirakis, P.G.: Coloring Non-sparse Random Intersection Graphs. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 600–611. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Nikoletseas, S., Raptopoulos, C., Spirakis, P.G.: Expander properties and the cover time of random intersection graphs. Theor. Comput. Sci. 410(50), 5261–5272 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Nikoletseas, S., Raptopoulos, C., Spirakis, P.G.: Large independent sets in general random intersection graphs. Theor. Comput. Sci. 406, 215–224 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Nikoletseas, S., Raptopoulos, C., Spirakis, P.G.: Maximum Cliques in Graphs with Small Intersection Number and Random Intersection Graphs. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 728–739. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Nikoletseas, S., Raptopoulos, C., Spirakis, P.G.: On the Independence Number and Hamiltonicity of Uniform Random Intersection Graphs. Theor. Comput. Sci. 412(48), 6750–6760 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Molloy, M., Reed, B.: Graph Colouring and the Probabilistic Method. Springer (2002)Google Scholar
  15. 15.
    Raptopoulos, C., Spirakis, P.G.: Simple and Efficient Greedy Algorithms for Hamilton Cycles in Random Intersection Graphs. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 493–504. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Rybarczyk, K.: Equivalence of a random intersection graph and G(n, p). Random Structures and Algorithms 38(1-2), 205–234 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Shang, Y.: On the Isolated Vertices and Connectivity in Random Intersection Graphs. International Journal of Combinatorics 2011, Article ID 872703 (2011), doi:10.1155/2011/872703Google Scholar
  18. 18.
    Singer-Cohen, K.B.: Random Intersection Graphs. PhD thesis, John Hopkins University (1995)Google Scholar
  19. 19.
    Stark, D.: The vertex degree distribution of random intersection graphs. Random Structures & Algorithms 24(3), 249–258 (2004)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Paul G. Spirakis
    • 1
    • 2
  • Sotiris Nikoletseas
    • 1
  • Christoforos Raptopoulos
    • 1
  1. 1.Computer Technology Institute and Press “Diophantus”University of PatrasGreece
  2. 2.Computer Science DepartmentUniversity of LiverpoolUnited Kingdom

Personalised recommendations