Advertisement

Outsourced Pattern Matching

  • Sebastian Faust
  • Carmit Hazay
  • Daniele Venturi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7966)

Abstract

In secure delegatable computation, computationally weak devices (or clients) wish to outsource their computation and data to an untrusted server in the cloud. While most earlier work considers the general question of how to securely outsource any computation to the cloud server, we focus on concrete and important functionalities and give the first protocol for the pattern matching problem in the cloud. Loosely speaking, this problem considers a text T that is outsourced to the cloud S by a client C T . In a query phase, clients C 1, …, C l run an efficient protocol with the server S and the client C T in order to learn the positions at which a pattern of length m matches the text (and nothing beyond that). This is called the outsourced pattern matching problem and is highly motivated in the context of delegatable computing since it offers storage alternatives for massive databases that contain confidential data (e.g., health related data about patient history). Our constructions offer simulation-based security in the presence of semi-honest and malicious adversaries (in the random oracle model) and limit the communication in the query phase to O(m) bits plus the number of occurrences — which is optimal. In contrast to generic solutions for delegatable computation, our schemes do not rely on fully homomorphic encryption but instead uses novel ideas for solving pattern matching, based on efficiently solvable instances of the subset sum problem.

Keywords

Pattern Match Random Oracle Homomorphic Encryption Random Oracle Model Setup Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: Efficient verification via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 152–163. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation. In: STOC, pp. 639–648 (1996)Google Scholar
  6. 6.
    Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation using fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 483–501. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Coster, M.J., Joux, A., LaMacchia, B.A., Odlyzko, A.M., Schnorr, C.-P., Stern, J.: Improved low-density subset sum algorithms. Computational Complexity 2, 111–128 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Damgård, I., Faust, S., Hazay, C.: Secure two-party computation with low communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–74. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Faust, S., Hazay, C., Venturi, D.: Outsourced pattern matching. Cryptology ePrint Archive, Report 2013/XX, http://eprint.iacr.org/
  10. 10.
    Frieze, A.M.: On the lagarias-odlyzko algorithm for the subset sum problem. SIAM J. Comput. 15(2), 536–539 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)Google Scholar
  13. 13.
    Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as subset sum. J. Cryptology 9(4), 199–216 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation. IACR Cryptology ePrint Archive, 2011:272 (2011)Google Scholar
  16. 16.
    Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. J. ACM 32(1), 229–246 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: STOC, pp. 1219–1234 (2012)Google Scholar
  18. 18.
    Lyubashevsky, V., Palacio, A., Segev, G.: Public-key cryptographic primitives provably as secure as subset sum. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 382–400. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Micali, S., Rabin, M.O., Kilian, J.: Zero-knowledge sets. In: FOCS, pp. 80–91 (2003)Google Scholar
  20. 20.
    Mohassel, P.: Efficient and secure delegation of linear algebra. IACR Cryptology ePrint Archive 2011:605 (2011)Google Scholar
  21. 21.
    Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. In: FOCS, pp. 458–467 (1997)Google Scholar
  22. 22.
    Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of operations on dynamic sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 91–110. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sebastian Faust
    • 1
  • Carmit Hazay
    • 2
  • Daniele Venturi
    • 3
  1. 1.Security and Cryptography LaboratoryEPFLSwitzerland
  2. 2.Faculty of EngineeringBar-Ilan UniveristyIsrael
  3. 3.Department of Computer ScienceAarhus UniversityDenmark

Personalised recommendations