Advertisement

Deterministic Polynomial Approach in the Plane

  • Yoann Dieudonné
  • Andrzej Pelc
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7966)

Abstract

Two mobile agents with range of vision 1 start at arbitrary points in the plane and have to accomplish the task of approach, which consists in getting at distance at most one from each other, i.e., in getting within each other’s range of vision. An adversary chooses the initial positions of the agents, their possibly different starting times, and assigns a different positive integer label and a possibly different speed to each of them. Each agent is equipped with a compass showing the cardinal directions, with a measure of length and a clock. Each agent knows its label and speed but not those of the other agent and it does not know the initial position of the other agent relative to its own. Agents do not have any global system of coordinates and they cannot communicate. Our main result is a deterministic algorithm to accomplish the task of approach, working in time polynomial in the unknown initial distance between the agents, in the length of the smaller label and in the inverse of the larger speed. The distance travelled by each agent until approach is polynomial in the first two parameters and does not depend on the third. The problem of approach in the plane reduces to a network problem: that of rendezvous in an infinite grid.

Keywords

Mobile Robot Mobile Agent Basic Time Initial Distance Arbitrary Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36, 56–82 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alpern, S.: The rendezvous search problem. SIAM J. on Control and Optimization 33, 673–683 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Alpern, S.: Rendezvous search on labelled networks. Naval Research Logistics 49, 256–274 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Alpern, S., Gal, S.: The theory of search games and rendezvous. Int. Series in Operations research and Management Science. Kluwer Academic Publisher (2002)Google Scholar
  5. 5.
    Alpern, J., Baston, V., Essegaier, S.: Rendezvous search on a graph. Journal of Applied Probability 36, 223–231 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Anderson, E., Weber, R.: The rendezvous problem on discrete locations. Journal of Applied Probability 28, 839–851 (1990)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bampas, E., Czyzowicz, J., Gąsieniec, L., Ilcinkas, D., Labourel, A.: Almost optimal asynchronous rendezvous in infinite multidimensional grids. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 297–311. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34, 1516–1528 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. SIAM J. Comput. 38, 276–302 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Collins, A., Czyzowicz, J., Gąsieniec, L., Labourel, A.: Tell me where I am so I can meet you sooner. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 502–514. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: Log-space rendezvous in arbitrary graphs. Distributed Computing 25, 165–178 (2012)zbMATHCrossRefGoogle Scholar
  13. 13.
    J. Czyzowicz, A. Labourel, A. Pelc, How to meet asynchronously (almost) everywhere. ACM Transactions on Algorithms 8, article 37 (2012)Google Scholar
  14. 14.
    De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theoretical Computer Science 355, 315–326 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Dieudonné, Y., Pelc, A.: Anonymous meeting in networks. In: Proc. 24rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013), pp. 737–747 (2013)Google Scholar
  17. 17.
    Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. In: Proc. 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), pp. 527–540 (2012)Google Scholar
  18. 18.
    Dieudonné, Y., Pelc, A., Villain, V.: How to meet asynchronously at polynomial cost. In: Proc. 32nd Annual ACM Symposium on Principles of Distributed Computing, PODC 2013 (to appear, 2013)Google Scholar
  19. 19.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous oblivious robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Fraigniaud, P., Pelc, A.: Deterministic rendezvous in trees with little memory. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 242–256. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Fraigniaud, P., Pelc, A.: Delays induce an exponential memory gap for rendezvous in trees. In: Proc. 22nd Ann. ACM Symposium on Parallel Algorithms and Architectures (SPAA 2010), pp. 224–232 (2010)Google Scholar
  22. 22.
    Guilbault, S., Pelc, A.: Asynchronous rendezvous of anonymous agents in arbitrary graphs. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 421–434. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: Gathering of many asynchronous oblivious robots on a ring. Theoretical Computer Science 411, 3235–3246 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theoretical Computer Science 390, 27–39 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Kowalski, D., Malinowski, A.: How to meet in anonymous network. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 44–58. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Kranakis, E., Krizanc, D., Morin, P.: Randomized rendez-vous with limited memory. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 605–616. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a ring. In: Proc. 23rd Int. Conference on Distributed Computing Systems (ICDCS 2003), pp. 592–599. IEEE (2003)Google Scholar
  28. 28.
    Lim, W., Alpern, S.: Minimax rendezvous on the line. SIAM J. on Control and Optimization 34, 1650–1665 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Mitzenmacher, M., Upfal, E.: Probability and computing: randomized algorithms and probabilistic analysis. Cambridge University Press (2005)Google Scholar
  30. 30.
    Pelc, A.: Deterministic rendezvous in networks: A comprehensive survey. Networks 59, 331–347 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly universal exploration sequences. In: Proc. 18th ACM-SIAM Symposium on Discrete Algorithms (SODA ), pp. 599–608 (2007)Google Scholar
  32. 32.
    Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yoann Dieudonné
    • 1
  • Andrzej Pelc
    • 2
  1. 1.MISUniversité de Picardie Jules VerneFrance
  2. 2.Département d’informatiqueUniversité du Québec en OutaouaisGatineauCanada

Personalised recommendations