Price of Stability in Polynomial Congestion Games

  • George Christodoulou
  • Martin Gairing
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7966)


The Price of Anarchy in congestion games has attracted a lot of research over the last decade. This resulted in a thorough understanding of this concept. In contrast the Price of Stability, which is an equally interesting concept, is much less understood.

In this paper, we consider congestion games with polynomial cost functions with nonnegative coefficients and maximum degree d. We give matching bounds for the Price of Stability in such games, i.e., our technique provides the exact value for any degree d.

For linear congestion games, tight bounds were previously known. Those bounds hold even for the more restricted case of dominant equilibria, which may not exist. We give a separation result showing that already for congestion games with quadratic cost functions this is not possible; that is, the Price of Anarchy for the subclass of games that admit a dominant strategy equilibrium is strictly smaller than the Price of Stability for the general class.


Nash Equilibrium Pure Strategy Congestion Game Potential Game Pure Nash Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aland, S., Dumrauf, D., Gairing, M., Monien, B., Schoppmann, F.: Exact price of anarchy for polynomial congestion games. SIAM Journal on Computing 40(5), 1211–1233 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Albers, S.: On the value of coordination in network design. SIAM Journal on Computing 38(6), 2273–2302 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM Journal on Computing 38(4), 1602–1623 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Awerbuch, B., Azar, Y., Epstein, A.: Large the price of routing unsplittable flow. In: Proceedings of STOC, pp. 57–66 (2005)Google Scholar
  5. 5.
    Bhawalkar, K., Gairing, M., Roughgarden, T.: Weighted congestion games: Price of anarchy, universal worst-case examples, and tightness. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part II. LNCS, vol. 6347, pp. 17–28. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Bilò, V.: A unifying tool for bounding the quality of non-cooperative solutions in weighted congestion games. In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS, vol. 7846, pp. 215–228. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Bilò, V., Bove, R.: Bounds on the price of stability of undirected network design games with three players. Journal of Interconnection Networks 12(1-2), 1–17 (2011)CrossRefGoogle Scholar
  8. 8.
    Bilò, V., Caragiannis, I., Fanelli, A., Monaco, G.: Improved lower bounds on the price of stability of undirected network design games. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 90–101. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli, L.: Tight bounds for selfish and greedy load balancing. Algorithmica 61, 606–637 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Chen, H.-L., Roughgarden, T.: Network design with weighted players. Theory of Computing Systems 45, 302–324 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: Proceedings of STOC, pp. 67–73 (2005)Google Scholar
  12. 12.
    Christodoulou, G., Chung, C., Ligett, K., Pyrga, E., van Stee, R.: On the price of stability for undirected network design. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 86–97. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Christodoulou, G., Koutsoupias, E.: On the price of anarchy and stability of correlated equilibria of linear congestion games. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 59–70. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Christodoulou, G., Koutsoupias, E., Spirakis, P.G.: On the performance of approximate equilibria in congestion games. Algorithmica 61(1), 116–140 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Disser, Y., Feldmann, A.E., Klimm, M., Mihalák, M.: Improving the h k-bound on the price of stability in undirected shapley network design games. CoRR, abs/1211.2090 (2012); To appear in CIAC 2013Google Scholar
  16. 16.
    Fiat, A., Kaplan, H., Levy, M., Olonetsky, S., Shabo, R.: On the price of stability for designing undirected networks with fair cost allocations. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 608–618. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Li, J.: An \(O(\frac{\log n}{\log\log n})\) upper bound on the price of stability for undirected Shapley network design games. Information Processing Letters 109(15), 876–878 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Monderer, D., Shapley, L.: Potential games. Games and Economics Behavior 14, 124–143 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory 2, 65–67 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Roughgarden, T.: Intrinsic robustness of the price of anarchy. Communications of the ACM 55(7), 116–123 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • George Christodoulou
    • 1
  • Martin Gairing
    • 1
  1. 1.Department of Computer ScienceUniversity of LiverpoolU.K.

Personalised recommendations