Silent Transitions in Automata with Storage

  • Georg Zetzsche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7966)


We consider the computational power of silent transitions in one-way automata with storage. Specifically, we ask which storage mechanisms admit a transformation of a given automaton into one that accepts the same language and reads at least one input symbol in each step. We study this question using the model of valence automata. Here, a finite automaton is equipped with a storage mechanism that is given by a monoid. This work presents generalizations of known results on silent transitions. For two classes of monoids, it provides characterizations of those monoids that allow the removal of silent transitions. Both classes are defined by graph products of copies of the bicyclic monoid and the group of integers. The first class contains pushdown storages as well as the blind counters while the second class contains the blind and the partially blind counters.


Input Symbol Storage Mechanism Input Word Membership Problem Commutative Monoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Book, R.V., Otto, F.: String-Rewriting Systems. Springer, New York (1993)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability Analysis of Pushdown Automata: Application to Model-Checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Caucal, D.: On infinite transition graphs having a decidable monadic theory. Theor. Comput. Sci. 290(1), 79–115 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Elder, M., Kambites, M., Ostheimer, G.: On Groups and Counter Automata. Internat. J. Algebra Comput. 18(8), 1345–1364 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Gilman, R.H.: Formal Languages and Infinite Groups. In: Geometric and Computational Perspectives on Infinite Groups. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 25 (1996)Google Scholar
  6. 6.
    Ginsburg, S., Spanier, E.H.: Bounded Algol-Like Languages. Trans. Amer. Math. Soc. 113(2), 333–368 (1964)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic finite automata. Inf. Process. Lett. 59(2), 75–77 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Greibach, S.A.: Remarks on blind and partially blind one-way multicounter machines. Theor. Comput. Sci. 7(3), 311–324 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Huet, G.: Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems. J. ACM 27(4), 797–821 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ibarra, O.H., Sahni, S.K., Kim, C.E.: Finite automata with multiplication. Theor. Comput. Sci. 2(3), 271–294 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Jantzen, M.: Eigenschaften von Petrinetzsprachen. German. PhD thesis. Universität Hamburg (1979)Google Scholar
  12. 12.
    Kambites, M.: Formal Languages and Groups as Memory. Communications in Algebra 37(1), 193–208 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Karianto, W.: Adding Monotonic Counters to Automata and Transition Graphs. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 308–319. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    van Leeuwen, J.: A generalisation of Parikh’s theorem in formal language theory. In: Loeckx, J. (ed.) ICALP 1974. LNCS, vol. 14, pp. 17–26. Springer, Heidelberg (1974)CrossRefGoogle Scholar
  15. 15.
    Lohrey, M., Steinberg, B.: The submonoid and rational subset membership problems for graph groups. J. Algebra 320(2), 728–755 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Mitrana, V., Stiebe, R.: Extended finite automata over groups. Discrete Applied Mathematics 108(3), 287–300 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Render, E., Kambites, M.: Rational subsets of polycyclic monoids and valence automata. Inform. and Comput. 207(11), 1329–1339 (2009)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Georg Zetzsche
    • 1
  1. 1.Fachbereich InformatikTechnische Universität KaiserslauternKaiserslauternGermany

Personalised recommendations